導航:首頁 > 數據處理 > 海量數據如何緩存預熱

海量數據如何緩存預熱

發布時間:2024-04-08 16:52:47

Ⅰ 如何處理大量數據並發操作

處理大量數據並發操作可以採用如下幾種方法:

1.使用緩存:使用程序直接保存到內存中。或者使用緩存框架: 用一個特定的類型值來保存,以區別空數據和未緩存的兩種狀態。

2.資料庫優化:表結構優化;SQL語句優化,語法優化和處理邏輯優化;分區;分表;索引優化;使用存儲過程代替直接操作。

3.分離活躍數據:可以分為活躍用戶和不活躍用戶。

4.批量讀取和延遲修改: 高並發情況可以將多個查詢請求合並到一個。高並發且頻繁修改的可以暫存緩存中。

5.讀寫分離: 資料庫伺服器配置多個,配置主從資料庫。寫用主資料庫,讀用從資料庫。

6.分布式資料庫: 將不同的表存放到不同的資料庫中,然後再放到不同的伺服器中。

7.NoSql和Hadoop: NoSql,not only SQL。沒有關系型資料庫那麼多限制,比較靈活高效。Hadoop,將一個表中的數據分層多塊,保存到多個節點(分布式)。每一塊數據都有多個節點保存(集群)。集群可以並行處理相同的數據,還可以保證數據的完整性。

拓展資料:

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。

Ⅱ 如何處理海量數據

在實際的工作環境下,許多人會遇到海量數據這個復雜而艱巨的問題,它的主要難點有以下幾個方面:
一、數據量過大,數據中什麼情況都可能存在。
如果說有10條數據,那麼大不了每條去逐一檢查,人為處理,如果有上百條數據,也可以考慮,如果數據上到千萬級別,甚至 過億,那不是手工能解決的了,必須通過工具或者程序進行處理,尤其海量的數據中,什麼情況都可能存在,例如,數據中某處格式出了問題,尤其在程序處理時, 前面還能正常處理,突然到了某個地方問題出現了,程序終止了。
二、軟硬體要求高,系統資源佔用率高。
對海量的數據進行處理,除了好的方法,最重要的就是合理使用工具,合理分配系統資源。一般情況,如果處理的數據過TB級,小型機是要考慮的,普通的機子如果有好的方法可以考慮,不過也必須加大CPU和內存,就象面對著千軍萬馬,光有勇氣沒有一兵一卒是很難取勝的。
三、要求很高的處理方法和技巧。
這也是本文的寫作目的所在,好的處理方法是一位工程師長期工作經驗的積累,也是個人的經驗的總結。沒有通用的處理方法,但有通用的原理和規則。
下面我們來詳細介紹一下處理海量數據的經驗和技巧:
一、選用優秀的資料庫工具
現在的資料庫工具廠家比較多,對海量數據的處理對所使用的資料庫工具要求比較高,一般使用Oracle或者DB2,微軟 公司最近發布的SQL Server 2005性能也不錯。另外在BI領域:資料庫,數據倉庫,多維資料庫,數據挖掘等相關工具也要進行選擇,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。筆者在實際數據分析項目中,對每天6000萬條的日誌數據進行處理,使用SQL Server 2000需要花費6小時,而使用SQL Server 2005則只需要花費3小時。
二、編寫優良的程序代碼
處理數據離不開優秀的程序代碼,尤其在進行復雜數據處理時,必須使用程序。好的程序代碼對數據的處理至關重要,這不僅僅是數據處理准確度的問題,更是數據處理效率的問題。良好的程序代碼應該包含好的演算法,包含好的處理流程,包含好的效率,包含好的異常處理機制等。
三、對海量數據進行分區操作
對海量數據進行分區操作十分必要,例如針對按年份存取的數據,我們可以按年進行分區,不同的資料庫有不同的分區方式,不 過處理機制大體相同。例如SQL Server的資料庫分區是將不同的數據存於不同的文件組下,而不同的文件組存於不同的磁碟分區下,這樣將數據分散開,減小磁碟I/O,減小了系統負荷, 而且還可以將日誌,索引等放於不同的分區下。
四、建立廣泛的索引
對海量的數據處理,對大表建立索引是必行的,建立索引要考慮到具體情況,例如針對大表的分組、排序等欄位,都要建立相應 索引,一般還可以建立復合索引,對經常插入的表則建立索引時要小心,筆者在處理數據時,曾經在一個ETL流程中,當插入表時,首先刪除索引,然後插入完 畢,建立索引,並實施聚合操作,聚合完成後,再次插入前還是刪除索引,所以索引要用到好的時機,索引的填充因子和聚集、非聚集索引都要考慮。
五、建立緩存機制
當數據量增加時,一般的處理工具都要考慮到緩存問題。緩存大小設置的好差也關繫到數據處理的成敗,例如,筆者在處理2億條數據聚合操作時,緩存設置為100000條/Buffer,這對於這個級別的數據量是可行的。
六、加大虛擬內存
如果系統資源有限,內存提示不足,則可以靠增加虛擬內存來解決。筆者在實際項目中曾經遇到針對18億條的數據進行處理, 內存為1GB,1個P42.4G的CPU,對這么大的數據量進行聚合操作是有問題的,提示內存不足,那麼採用了加大虛擬內存的方法來解決,在6塊磁碟分區 上分別建立了6個4096M的磁碟分區,用於虛擬內存,這樣虛擬的內存則增加為 4096*6 + 1024 =25600 M,解決了數據處理中的內存不足問題。
七、分批處理
海量數據處理難因為數據量大,那麼解決海量數據處理難的問題其中一個技巧是減少數據量。可以對海量數據分批處理,然後處 理後的數據再進行合並操作,這樣逐個擊破,有利於小數據量的處理,不至於面對大數據量帶來的問題,不過這種方法也要因時因勢進行,如果不允許拆分數據,還 需要另想辦法。不過一般的數據按天、按月、按年等存儲的,都可以採用先分後合的方法,對數據進行分開處理。
八、使用臨時表和中間表
數據量增加時,處理中要考慮提前匯總。這樣做的目的是化整為零,大表變小表,分塊處理完成後,再利用一定的規則進行合 並,處理過程中的臨時表的使用和中間結果的保存都非常重要,如果對於超海量的數據,大表處理不了,只能拆分為多個小表。如果處理過程中需要多步匯總操作, 可按匯總步驟一步步來,不要一條語句完成,一口氣吃掉一個胖子。
九、優化查詢SQL語句
在對海量數據進行查詢處理過程中,查詢的SQL語句的性能對查詢效率的影響是非常大的,編寫高效優良的SQL腳本和存儲 過程是資料庫工作人員的職責,也是檢驗資料庫工作人員水平的一個標准,在對SQL語句的編寫過程中,例如減少關聯,少用或不用游標,設計好高效的資料庫表 結構等都十分必要。筆者在工作中試著對1億行的數據使用游標,運行3個小時沒有出結果,這是一定要改用程序處理了。
十、使用文本格式進行處理
對一般的數據處理可以使用資料庫,如果對復雜的數據處理,必須藉助程序,那麼在程序操作資料庫和程序操作文本之間選擇, 是一定要選擇程序操作文本的,原因為:程序操作文本速度快;對文本進行處理不容易出錯;文本的存儲不受限制等。例如一般的海量的網路日誌都是文本格式或者 csv格式(文本格式),對它進行處理牽扯到數據清洗,是要利用程序進行處理的,而不建議導入資料庫再做清洗。
十一、定製強大的清洗規則和出錯處理機制
海量數據中存在著不一致性,極有可能出現某處的瑕疵。例如,同樣的數據中的時間欄位,有的可能為非標準的時間,出現的原因可能為應用程序的錯誤,系統的錯誤等,這是在進行數據處理時,必須制定強大的數據清洗規則和出錯處理機制。
十二、建立視圖或者物化視圖
視圖中的數據來源於基表,對海量數據的處理,可以將數據按一定的規則分散到各個基表中,查詢或處理過程中可以基於視圖進行,這樣分散了磁碟I/O,正如10根繩子吊著一根柱子和一根吊著一根柱子的區別。
十三、避免使用32位機子(極端情況)
目前的計算機很多都是32位的,那麼編寫的程序對內存的需要便受限制,而很多的海量數據處理是必須大量消耗內存的,這便要求更好性能的機子,其中對位數的限制也十分重要。
十四、考慮操作系統問題
海量數據處理過程中,除了對資料庫,處理程序等要求比較高以外,對操作系統的要求也放到了重要的位置,一般是必須使用伺服器的,而且對系統的安全性和穩定性等要求也比較高。尤其對操作系統自身的緩存機制,臨時空間的處理等問題都需要綜合考慮。
十五、使用數據倉庫和多維資料庫存儲
數據量加大是一定要考慮OLAP的,傳統的報表可能5、6個小時出來結果,而基於Cube的查詢可能只需要幾分鍾,因此處理海量數據的利器是OLAP多維分析,即建立數據倉庫,建立多維數據集,基於多維數據集進行報表展現和數據挖掘等。
十六、使用采樣數據,進行數據挖掘
基於海量數據的數據挖掘正在逐步興起,面對著超海量的數據,一般的挖掘軟體或演算法往往採用數據抽樣的方式進行處理,這樣 的誤差不會很高,大大提高了處理效率和處理的成功率。一般采樣時要注意數據的完整性和,防止過大的偏差。筆者曾經對1億2千萬行的表數據進行采樣,抽取出 400萬行,經測試軟體測試處理的誤差為千分之五,客戶可以接受。
還有一些方法,需要在不同的情況和場合下運用,例如使用代理鍵等操作,這樣的好處是加快了聚合時間,因為對數值型的聚合比對字元型的聚合快得多。類似的情況需要針對不同的需求進行處理。
海量數據是發展趨勢,對數據分析和挖掘也越來越重要,從海量數據中提取有用信息重要而緊迫,這便要求處理要准確,精度要高,而且處理時間要短,得到有價值信息要快,所以,對海量數據的研究很有前途,也很值得進行廣泛深入的研究。

Ⅲ "澶存潯鏂囩珷鍚戠敤鎴鋒帹閫侀伩鍏嶉噸澶嶆帹閫佺殑闂棰" 鐨勪竴涓瑙e喅鎬濊礬

鍦ㄩ摼鎺 http://www.dengb.com/Javabc/1409473.html 涓鍙戠幇浜嗕竴閬撻潪甯告湁瓚g殑棰樼洰 --- 鈥滃ご鏉℃枃絝犲悜鐢ㄦ埛鎺ㄩ侀伩鍏嶉噸澶嶆帹閫佺殑闂棰樷濓紝鍩轟簬鑷宸辯殑鎬濊冩彁鍑轟竴涓綆鍗曠殑璁捐★紝渚涘ぇ瀹跺悙妲斤紝鎶涚爾寮曠帀銆

闃呰昏繃鐨勬枃絝犲垪琛↖D浼氳秺鏉ヨ秺澶氾紝涔熷氨鏄痠n閲岄潰鐨勬潯浠惰秺鏉ヨ秺澶氾紝褰搃n鐨勬潯浠跺埌涓瀹氱▼搴﹀悗錛屽彲鑳戒細涓嶈蛋緔㈠紩瀵艱嚧鏁堢巼闄嶄綆 (鍙傝冩枃妗2)錛涘彟澶栵紝in 璇鍙ュ悗闈㈢殑鍙傛暟鍙鑳戒細鏈夐檺鍒 (鍙傝冩枃妗3錛

浼樺寲鎬濊礬
鍥犱負鎴戜滑鏈夊亣璁2) 鏂囩珷嫻烽噺錛岀敤鎴烽槄璇誨巻鍙叉瘮杈冨皯錛屾墍浠ユ垜浠鍙浠ョ敤涓嬮潰鐨勬柟娉曚紭鍖栨煡璇錛

鐒跺悗鍐嶅皢涓ゆユ枃絝營D鐨勫樊闆嗕綔涓哄師濮嬫暟鎹銆

鍥犱負鏈夌浜屾ヤ腑鏈変竴浜涙枃絝營D浼氳鎺掗櫎鎺夛紝鎵浠ヤ笉搴旇ョ敤絎浜屾ョ殑緇撴灉鐩存帴浣滀負鏌ヨ㈢粨鏋滆繑鍥炵粰鍓嶇銆傛垜浠鍙浠ワ細

褰撶敤鎴烽栨′嬌鐢ˋPP鏃訛紝鎴戜滑鍙闇瑕佹墽琛屼互涓婼QL錛屽苟灝嗘枃絝營D鏀捐繘redis緙撳瓨錛屽嵆鍙瀹屾垚棰勭儹銆

閫氳繃浠ヤ笂鍥涙ワ紝鍗沖彲鍋氬埌錛

澶у跺傛灉鏈夊叾浠栫殑璁捐℃柟娉曪紝嬈㈣繋浜ゆ祦鍒囩嬨

Ⅳ 互聯網如何海量存儲數據

目前存儲海量數據的技術主要包括NoSQL、分布式文件系統、和傳統關系型資料庫。隨著互聯網行業不斷的發展,產生的數據量越來越多,並且這些數據的特點是半結構化和非結構化,數據很可能是不精確的,易變的。這樣傳統關系型資料庫就無法發揮它的優勢。因此,目前互聯網行業偏向於使用NoSQL和分布式文件系統來存儲海量數據。

下面介紹下常用的NoSQL和分布式文件系統。
NoSQL
互聯網行業常用的NoSQL有:HBase、MongoDB、Couchbase、LevelDB。

HBase是Apache Hadoop的子項目,理論依據為Google論文 Bigtable: A Distributed Storage System for Structured Data開發的。HBase適合存儲半結構化或非結構化的數據。HBase的數據模型是稀疏的、分布式的、持久穩固的多維map。HBase也有行和列的概念,這是與RDBMS相同的地方,但卻又不同。HBase底層採用HDFS作為文件系統,具有高可靠性、高性能。

MongoDB是一種支持高性能數據存儲的開源文檔型資料庫。支持嵌入式數據模型以減少對資料庫系統的I/O、利用索引實現快速查詢,並且嵌入式文檔和集合也支持索引,它復制能力被稱作復制集(replica set),提供了自動的故障遷移和數據冗餘。MongoDB的分片策略將數據分布在伺服器集群上。

Couchbase這種NoSQL有三個重要的組件:Couchbase伺服器、Couchbase Gateway、Couchbase Lite。Couchbase伺服器,支持橫向擴展,面向文檔的資料庫,支持鍵值操作,類似於SQL查詢和內置的全文搜索;Couchbase Gateway提供了用於RESTful和流式訪問數據的應用層API。Couchbase Lite是一款面向移動設備和「邊緣」系統的嵌入式資料庫。Couchbase支持千萬級海量數據存儲
分布式文件系統
如果針對單個大文件,譬如超過100MB的文件,使用NoSQL存儲就不適當了。使用分布式文件系統的優勢在於,分布式文件系統隔離底層數據存儲和分布的細節,展示給用戶的是一個統一的邏輯視圖。常用的分布式文件系統有Google File System、HDFS、MooseFS、Ceph、GlusterFS、Lustre等。

相比過去打電話、發簡訊、用彩鈴的「老三樣」,移動互聯網的發展使得人們可以隨時隨地通過刷微博、看視頻、微信聊天、瀏覽網頁、地圖導航、網上購物、外賣訂餐等,這些業務的海量數據都構建在大規模網路雲資源池之上。當14億中國人把衣食住行搬上移動互聯網的同時,也給網路雲資源池帶來巨大業務挑戰。

首先,用戶需求動態變化,傳統業務流量主要是端到端模式,較為穩定;而互聯網流量易受熱點內容牽引,數據流量流向復雜和規模多變:比如雙十一購物狂潮,電商平台訂單創建峰值達到58.3萬筆,要求通信網路提供高並發支持;又如優酷春節期間有超過23億人次上網刷劇、抖音拜年短視頻增長超10倍,需要通信網路能夠靈活擴充帶寬。面對用戶動態多變的需求,通信網路需要具備快速洞察和響應用戶需求的能力,提供高效、彈性、智能的數據服務。

「隨著通信網路管道十倍百倍加粗、節點數從千萬級逐漸躍升至百億千億級,如何『接得住、存得下』海量數據,成為網路雲資源池建設面臨的巨大考驗」,李輝表示。一直以來,作為新數據存儲首倡者和引領者,浪潮存儲攜手通信行業用戶,不斷 探索 提速通信網路雲基礎設施的各種姿勢。

早在2018年,浪潮存儲就參與了通信行業基礎設施建設,四年內累計交付約5000套存儲產品,涵蓋全快閃記憶體儲、高端存儲、分布式存儲等明星產品。其中在網路雲建設中,浪潮存儲已連續兩年兩次中標全球最大的NFV網路雲項目,其中在網路雲二期建設中,浪潮存儲提供數千節點,為上層網元、應用提供高效數據服務。在最新的NFV三期項目中,浪潮存儲也已中標。

能夠與通信用戶在網路雲建設中多次握手,背後是浪潮存儲的持續技術投入與創新。浪潮存儲6年內投入超30億研發經費,開發了業界首個「多合一」極簡架構的浪潮並行融合存儲系統。此存儲系統能夠統籌管理數千個節點,實現性能、容量線性擴展;同時基於浪潮iTurbo智能加速引擎的智能IO均衡、智能資源調度、智能元數據管理等功能,與自研NVMe SSD快閃記憶體檔進行系統級別聯調優化,讓百萬級IO均衡落盤且路徑更短,將存儲系統性能發揮到極致。

「為了確保全球最大規模的網路雲正常上線運行,我們聯合用戶對存儲集群展開了長達數月的魔鬼測試」,浪潮存儲工程師表示。網路雲的IO以虛擬機數據和上層應用數據為主,浪潮按照每個存儲集群支持15000台虛機進行配置,分別對單卷隨機讀寫、順序寫、混合讀寫以及全系統隨機讀寫的IO、帶寬、時延等指標進行了360無死角測試,達到了通信用戶提出的單卷、系統性能不低於4萬和12萬IOPS、時延小於3ms的要求,產品成熟度得到了驗證。

以通信行業為例,2020年全國移動互聯網接入流量1656億GB,相當於中國14億人每人消耗118GB數據;其中春節期間,移動互聯網更是創下7天消耗36億GB數據流量的記錄,還「捎帶」打了548億分鍾電話、發送212億條簡訊……海量實時數據洪流,在網路雲資源池(NFV)支撐下收放自如,其中分布式存儲平台發揮了作用。如此樣板工程,其巨大示範及拉動作用不言而喻。

Ⅳ 銀行海量交易數據是怎麼存儲的

「合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。」分析和決策這才是銀行引入「大數據」處理的關鍵因素。僅僅對於「海量流水數據提供給客戶查詢」而言,只是滿足了客戶的某個功能性需求而已。
一般來說,銀行的數據都是結構化的、持久性存儲的(非結構化的數據一般指電子影像,如客戶辦理業務的回單掃描圖片等),以資料庫以及文件方式存儲為主。按照交易數據性質,我們可以分為「原始流水數據」和「加工後數據」兩種。

閱讀全文

與海量數據如何緩存預熱相關的資料

熱點內容
小程序小游戲什麼最好玩 瀏覽:152
黑龍江省二手房不滿2年交易稅是多少 瀏覽:71
瑤海大市場南面什麼時候拆遷 瀏覽:582
臨清到義烏批發市場怎麼去 瀏覽:154
網店數據採集員是干什麼的 瀏覽:4
網路大數據專業前景如何 瀏覽:411
湖人怎麼交易走威少 瀏覽:618
正規代理平台哪個好 瀏覽:132
數控技術用於鐵道局的工資怎麼樣 瀏覽:978
線上購物代理需要哪些手續 瀏覽:268
技術規范去哪裡買 瀏覽:728
登錄界面如何與資料庫進行交互 瀏覽:438
場內基金是些什麼人在交易 瀏覽:239
米9se用什麼數據線 瀏覽:298
花卉市場有哪些產品形式 瀏覽:391
為什麼現金分紅下個交易日才生效 瀏覽:240
青島哪個海鮮市場附近啤酒屋多 瀏覽:895
招聘老師考核哪些內容程序要多久 瀏覽:763
長形胚囊的數據是多少 瀏覽:610
福建眼霜加盟代理費用多少 瀏覽:137