『壹』 小白如何學習數據分析
1.統計學相關知識
統計學是數據分析的基礎,因為數據分析需要對大量數據進行統計分析,大家可以通過對統計學的學習,培養數據分析最基本的一些邏輯思維。
2. EXCEL
不要小看EXCEL,它可是最初級的數據分析工具,在處理的數據量不是很大時,EXCEL完全可以勝任。而且大家都有一定基礎,平時工作中也經常用,學習起來應該很容易,重點應該加強對於各類函數以及EXCEL數據可視化的學習。
3.代碼語言的了解
數據分析需要使用的工具很多,例如python、SQL等,這些都需要強大的代碼知識做支撐,所以有想學習數據分析的小夥伴可以在學習之前初步對代碼有一個了解,這樣不至於真正學習起來手足無措。
『貳』 如何學習成為一名數據分析師
學習數據分析師之前,你必須清楚自己想要達成什麼目標。也就是說,你想通過這門技術來解決哪些問題或實現什麼計劃。有了這個目標,你才能清晰地開展自己的學習規劃,並且明確它的知識體系。
『叄』 如何自學數據分析
第一方面是數學基礎,第二方面是統計學基礎,第三方面是計算機基礎。要想在數據分析的道路上走得更遠,一定要注重數學和統計學的學習。數據分析說到底就是尋找數據背後的規律,而尋找規律就需要具備演算法的設計能力,所以數學和統計學對於數據分析是非常重要的。
而想要快速成為數據分析師,則可以從計算機知識開始學起,具體點就是從數據分析工具開始學起,然後在學習工具使用過程中,輔助演算法以及行業致死的學習。學習數據分析工具往往從Excel工具開始學起,Excel是目前職場人比較常用的數據分析工具,通常在面對10萬條以內的結構化數據時,Excel還是能夠勝任的。對於大部分職場人來說,掌握Excel的數據分析功能能夠應付大部分常見的數據分析場景。
在掌握Excel之後,接下來就應該進一步學習資料庫的相關知識了,可以從關系型資料庫開始學起,重點在於Sql語言。掌握資料庫之後,數據分析能力會有一個較大幅度的提升,能夠分析的數據量也會有明顯的提升。如果採用資料庫和BI工具進行結合,那麼數據分析的結果會更加豐富,同時也會有一個比較直觀的呈現界面。
數據分析的最後一步就需要學習編程語言了,目前學習Python語言是個不錯的選擇,Python語言在大數據分析領域有比較廣泛的使用,而且Python語言自身比較簡單易學,即使沒有編程基礎的人也能夠學得會。通過Python來採用機器學習的方式實現數據分析是當前比較流行的數據分析方式。
『肆』 數據分析如何自學
先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
學習數據分析建議可以到專業的機構學習比較好,例如CDA認證中心就是一個不錯的選擇,CDA是大數據和人工智慧時代面向國際范圍全行業的數據分析專業人才職業簡稱,具體指在互聯網、金融、咨詢、電信、零售、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據人才。
『伍』 零基礎學數據分析應該怎麼入門
數據科學是一門應用學科,需要系統提升數據獲取、數據分析、數據可視化、機器學習的水平。下面就簡單提供一個數據分析入門的路徑:
第一階段:Excel數據分析
每一位數據分析師都脫離不開Excel。excel是日常工作中最常用的工具,如果不考慮性能和數據量,可以應付絕大部分分析工作。雖然現在機器學習滿地走,Excel依舊是無可爭議的第一工具。
第二階段:SQL資料庫語言
作為數據分析人員,首先要知道如何去獲取數據,其中最常見的就是從關系型資料庫中取數,因此可以不會R,不會python,但是不能不會SQL。DT時代,數據正在呈指數級增長。Excel對十萬條以內的數據處理起來沒有問題,但是往小處說,但凡產品有一點規模,數據都是百萬起。這時候就需要學習資料庫。
第三階段:數據可視化&商業智能
數據可視化能力已經越來越成為各崗位的基礎技能。領英的數據報告顯示,數據可視化技能在歷年年中國最熱門技能中排名第一。
學習數據分析可以到CDA數據分析認證中心了解一下,CDA是大數據和人工智慧時代面向國際范圍全行業的數據分析專業人才職業簡稱,具體指在互聯網、金融、咨詢、電信、零售、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據人才。
『陸』 超級菜鳥怎麼學習數據分析
其實無論是小白或者超級菜鳥,又或者已經具備一定的數理統計或計算機編程基礎,對於學習數據分析師來說,都是從頭開始。雖然擁有一定的學資背景,會讓你在剛開始學習時比較容易上手,但都是基本性的東西,不具備明顯的優勢。個人的努力和興趣,以及自覺學習和自主思考的能力也非常重要。不要因為自己是菜鳥而妄自菲薄,付出終有回報,只要持之以恆。
明確目標導向,學習必備也是最有用的那部分,才能避免無效信息降低學習效率。
明確知識框架和學習路徑
數據分析這件事,如果你要成為數據分析師,那麼你可以去招聘網站看看,對應的職位的需求是什麼,一般來說你就會對應該掌握的知識架構有初步的了解。你可以去看看數據分析師職位,企業對技能需求可總結如下:
SQL資料庫的基本操作,會基本的數據管理;
會用Excel/SQL做基本的數據提取、分析和展示;
會用腳本語言進行數據分析,Python or R;
有獲取外部數據的能力加分,如爬蟲或熟悉公開數據集;
會基本的數據可視化技能,能撰寫數據報告;
熟悉常用的數據挖掘演算法:回歸分析、決策樹、分類、聚類方法;
高效的學習路徑是什麼?就是數據分析的流程。一般大致可以按「數據獲取-數據存儲與提取-數據預處理-數據建模與分析-數據可視化」這樣的步驟來實現一個數據分析師的學成之旅。按這樣的順序循序漸進,你會知道每個部分需要完成的目標是什麼,需要學習哪些知識點,哪些知識是暫時不必要的。然後每學習一個部分,你就能夠有一些實際的成果輸出,有正向的反饋和成就感,你才會願意花更多的時間投入進去。以解決問題為目標,效率自然不會低。
按照上面的流程,我們分需要獲取外部數據和不需要獲取外部數據兩類分析師,總結學習路徑如下:
1.需要獲取外部數據分析師:
python基礎知識
python爬蟲
SQL語言
python科學計算包:pandas、numpy、scipy、scikit-learn
統計學基礎
回歸分析方法
數據挖掘基本演算法:分類、聚類
模型優化:特徵提取
數據可視化:seaborn、matplotlib
2.不需要獲取外部數據分析師:
SQL語言
python基礎知識
python科學計算包:pandas、numpy、scipy、scikit-learn
統計學基礎
回歸分析方法
數據挖掘基本演算法:分類、聚類
模型優化:特徵提取
數據可視化:seaborn、matplotlib
『柒』 小白如何學習數據分析
其實無論是小白或者超級菜鳥,又或者已經具備一定的數理統計或計算機編程基礎,對於學習數據分析師來說,都是從頭開始。雖然擁有一定的學資背景,會讓你在剛開始學習時比較容易上手,但都是基本性的東西,不具備明顯的優勢。個人的努力和興趣,以及自覺學習和自主思考的能力也非常重要。不要因為自己是菜鳥而妄自菲薄,付出終有回報,只要持之以恆。
明確目標導向,學習必備也是最有用的那部分,才能避免無效信息降低學習效率。
明確知識框架和學習路徑
數據分析這件事,如果你要成為數據分析師,那麼你可以去招聘網站看看,對應的職位的需求是什麼,一般來說你就會對應該掌握的知識架構有初步的了解。你可以去看看數據分析師職位,企業對技能需求可總結如下:
SQL資料庫的基本操作,會基本的數據管理;
會用Excel/SQL做基本的數據提取、分析和展示;
會用腳本語言進行數據分析,Python or R;
有獲取外部數據的能力加分,如爬蟲或熟悉公開數據集;
會基本的數據可視化技能,能撰寫數據報告;
熟悉常用的數據挖掘演算法:回歸分析、決策樹、分類、聚類方法;
高效的學習路徑是什麼?就是數據分析的流程。一般大致可以按「數據獲取-數據存儲與提取-數據預處理-數據建模與分析-數據可視化」這樣的步驟來實現一個數據分析師的學成之旅。按這樣的順序循序漸進,你會知道每個部分需要完成的目標是什麼,需要學習哪些知識點,哪些知識是暫時不必要的。然後每學習一個部分,你就能夠有一些實際的成果輸出,有正向的反饋和成就感,你才會願意花更多的時間投入進去。以解決問題為目標,效率自然不會低。
按照上面的流程,我們分需要獲取外部數據和不需要獲取外部數據兩類分析師,總結學習路徑如下:
1.需要獲取外部數據分析師:
python基礎知識
python爬蟲
SQL語言
python科學計算包:pandas、numpy、scipy、scikit-learn
統計學基礎
回歸分析方法
數據挖掘基本演算法:分類、聚類
模型優化:特徵提取
數據可視化:seaborn、matplotlib
2.不需要獲取外部數據分析師:
SQL語言
python基礎知識
python科學計算包:pandas、numpy、scipy、scikit-learn
統計學基礎
回歸分析方法
數據挖掘基本演算法:分類、聚類
模型優化:特徵提取
數據可視化:seaborn、matplotlib
『捌』 如何自學數據分析
第一方面是數學基礎,第二方面是統計學基礎,第三方面是計算機基礎。要想在數據分析的道路上走得更遠,一定要注重數學和統計學的學習。數據分析說到底就是尋找數據背後的規律,而尋找規律就需要具備演算法的設計能力,所以數學和統計學對於數據分析是非常重要的。
而想要快速成為數據分析師,則可以從計算機知識開始學起,具體點就是從數據分析工具開始學起,然後在學習工具使用過程中,輔助演算法以及行業致死的學習。學習數據分析工具往往從Excel工具開始學起,Excel是目前職場人比較常用的數據分析工具,通常在面對10萬條以內的結構化數據時,Excel還是能夠勝任的。對於大部分職場人來說,掌握Excel的數據分析功能能夠應付大部分常見的數據分析場景。
在掌握Excel之後,接下來就應該進一步學習資料庫的相關知識了,可以從關系型資料庫開始學起,重點在於Sql語言。掌握資料庫之後,數據分析能力會有一個較大幅度的提升,能夠分析的數據量也會有明顯的提升。如果採用資料庫和BI工具進行結合,那麼數據分析的結果會更加豐富,同時也會有一個比較直觀的呈現界面。
數據分析的最後一步就需要學習編程語言了,目前學習Python語言是個不錯的選擇,Python語言在大數據分析領域有比較廣泛的使用,而且Python語言自身比較簡單易學,即使沒有編程基礎的人也能夠學得會。通過Python來採用機器學習的方式實現數據分析是當前比較流行的數據分析方式。
『玖』 零基礎小白怎如何學習數據分析
【導讀】作為當下的熱門,數據分析受到了很多小夥伴的歡迎,一方面是其比較高的薪資造就,另一方面也是數據行業的未來發展前景非常的不錯。不過小編發現很多小夥伴們剛燃起進軍數據分析行業的鬥志,就被一些人的三言兩語給勸退了。都0202年了,怎麼還會有人以為,只有專業的同學,才能做數據分析師?今天小編就來和大家說說零基礎小白怎如何學習數據分析?
數據分析師需要掌握什麼?
數據分析師是一個收入高、待遇優的職業。但是天底下哪有那麼好的事?沒有人能隨隨便便成為數據分析師。為此,剛開始學習數據分析師的小夥伴們可以從這幾個方面著手學習:
1、編程語言。在數據分析師進行數據分析時,一定會用到Python或者R等編程語言。如果你是一個沒有任何編程基礎的小白,你可以先從最基礎的C開始學起,然後再選擇學習Python還是R語言。
2、數學。有人就要說了:「我小學一年級就開始學數學了,數學能力肯定不在話下。」咳咳,數據分析可不是要你處理一加一等於幾的數學問題,這些問題現在計算機可都會做啦!而作為機智的二十一世紀人類,有更偉大的事情等著我們——處理有關矩陣、微積分、積分以及線性代數等問題。
3、統計學。統計學用到了大量的數學及其它學科的專業知識,其應用范圍幾乎覆蓋了社會科學和自然科學的各個領域。數據分析師通過使用統計方法,來分析和解釋數據哦~
非專業怎麼學數據分析?
1、了解企業有關數據分析師的招聘要求
具備什麼技能的人,才能成為企業所需要的數據分析師呢?在開始自己的學習之旅前,你可以先瀏覽一下各大招聘網站,看看各大公司的有關數據分析師的招聘要求。你要會什麼樣的軟體,具備什麼樣的技能,招聘要求上都寫得清清楚楚。多關注企業的招聘要求,要學什麼,你心裡就有數了。
2、尋找與數據分析有關的學習資源
網路上有數以萬計的學習教程可供你選擇,你可以在B站、知乎以及CSDN等各大平台搜索到。(PS:買瓶飲料不如買門課,我們博為峰的抖音賬號上也有專門售賣數據分析的試聽課程,巨劃算哦~)
但是,專門花幾個月的時間學習數據分析的確能讓你入門,但這並不意味著後續你就可以不學了。優秀的數據分析師一定懂得與時俱進,及時補充數據分析方面的知識。
3、找相關數據分析的實習工作
剛畢業或者在校的小夥伴們可以嘗試找與數據分析相關的實習工作。實習過程中,你可以結實很多數據分析方面的大牛。臉皮厚一點,多向大牛問問題。等你真正工作了,你就會發現,企業的問題很多問題都需要你來處理,而不是說你給企業提問題。
注意!實習一定不要太在意公司給的薪水,能學到東西的實習才是好實習!有些企業給的實習工資的確高,但是,要麼他會讓你做一堆與數據分析無關的工作(整理文檔、買咖啡);要麼他對你的數據分析能力要求非常高,可是,如果你能力很強,你卻依舊拿著實習的工資,對你來說是很不公平的。因此,即便是實習工作,我們也要擦亮眼睛找哦~
4、選擇你感興趣的行業著手
各行各業都會運用到數據分析,你可以選擇你喜歡的行業進行深入分析。如果你愛打游戲,你可以選擇往游戲公司的數據分析師方向發展。同樣,如果你是一個愛美的女生,你就可以選擇時尚服裝行業。
5、結合你所學的專業學習數據分析
大學所學的專業知識真的完全用不上嗎?也不一定啦。比如,你大學學的專業是物流管理,當你掌握了數據分析能力後,你可以考慮去物流公司應聘,研究研究怎麼才能更快地把快遞送到客戶手上,它不香嗎~
6、結交網路上的數據分析大神
沒有數據分析師會是周震南這樣的2G少年,更多的應該是丁禹兮這樣的5G沖浪選手。人們因為愛好和人生選擇的一致,即使在網路世界,也可以成為朋友。數據分析界亦是如此哦。當你在知乎平台拋出一個問題時,一定會有很多人回復你。
以上就是小編今天給大家整理發送的關於「零基礎小白怎如何學習數據分析?」的相關內容,希望對大家有所幫助。想了解更多關於數據分析及人工智慧就業崗位分析,關注小編持續更新。