導航:首頁 > 數據處理 > 資料庫有哪些新科技

資料庫有哪些新科技

發布時間:2024-03-29 03:37:26

A. 常用的資料庫安全技術有哪些

1)用戶標識和鑒別:該方法由系統提供一定的方式讓用戶標識自己咱勺名字或身份。每次用戶要求進入系統時,由系統進行核對,通過鑒定後才提供系統的使用權。

(2)存取控制:通過用戶許可權定義和合法權檢查確保只有合法許可權的用戶訪問資料庫,所有未被授權的人員無法存取數據。例如C2級中的自主存取控制(I)AC),Bl級中的強制存取控制(M.AC)。

(3)視圖機制:為不同的用戶定義視圖,通過視圖機制把要保密的數據對無權存取的用戶隱藏起來,從而自動地對數據提供一定程度的安全保護。

(4)審計:建立審計日誌,把用戶對資料庫的所有操作自動記錄下來放人審計日誌中,DBA可以利用審計跟蹤的信息,重現導致資料庫現有狀況的一系列事件,找出非法存取數據的人、時間和內容等。

(5)數據加密:對存儲和傳輸的數據進行加密處理,從而使得不知道解密演算法的人無法獲知數據的內容。

B. 大數據核心技術有哪些

大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。首先給出一個通用化的大數據處理框架,主要分為下面幾個方面:數據採集與預處理、數據存儲、數據清洗、數據查詢分析和數據可視化。

一、數據採集與預處理

對於各種來源的數據,包括移動互聯網數據、社交網路的數據等,這些結構化和非結構化的海量數據是零散的,也就是所謂的數據孤島,此時的這些數據並沒有什麼意義,數據採集就是將這些數據寫入數據倉庫中,把零散的數據整合在一起,對這些數據綜合起來進行分析。數據採集包括文件日誌的採集、資料庫日誌的採集、關系型資料庫的接入和應用程序的接入等。在數據量比較小的時候,可以寫個定時的腳本將日誌寫入存儲系統,但隨著數據量的增長,這些方法無法提供數據安全保障,並且運維困難,需要更強壯的解決方案。

Flume NG作為實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據,同時,對數據進行簡單處理,並寫到各種數據接收方(比如文本,HDFS,Hbase等)。Flume NG採用的是三層架構:Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數據源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數據,讀取成功之後會刪除channel中的信息。

NDC,Netease Data Canal,直譯為網易數據運河系統,是網易針對結構化資料庫的數據實時遷移、同步和訂閱的平台化解決方案。它整合了網易過去在數據傳輸領域的各種工具和經驗,將單機資料庫、分布式資料庫、OLAP系統以及下游應用通過數據鏈路串在一起。除了保障高效的數據傳輸外,NDC的設計遵循了單元化和平台化的設計哲學。

Logstash是開源的伺服器端數據處理管道,能夠同時從多個來源採集數據、轉換數據,然後將數據發送到您最喜歡的 「存儲庫」 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數據來源捕捉事件,能夠以連續的流式傳輸方式,輕松地從您的日誌、指標、Web 應用、數據存儲以及各種 AWS 服務採集數據。

Sqoop,用來將關系型資料庫和Hadoop中的數據進行相互轉移的工具,可以將一個關系型資料庫(例如Mysql、Oracle)中的數據導入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數據導入到關系型資料庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapRece 作業(極其容錯的分布式並行計算)來執行任務。Sqoop 的另一大優勢是其傳輸大量結構化或半結構化數據的過程是完全自動化的。

流式計算是行業研究的一個熱點,流式計算對多個高吞吐量的數據源進行實時的清洗、聚合和分析,可以對存在於社交網站、新聞等的數據信息流進行快速的處理並反饋,目前大數據流分析工具有很多,比如開源的strom,spark streaming等。

Strom集群結構是有一個主節點(nimbus)和多個工作節點(supervisor)組成的主從結構,主節點通過配置靜態指定或者在運行時動態選舉,nimbus與supervisor都是Storm提供的後台守護進程,之間的通信是結合Zookeeper的狀態變更通知和監控通知來處理。nimbus進程的主要職責是管理、協調和監控集群上運行的topology(包括topology的發布、任務指派、事件處理時重新指派任務等)。supervisor進程等待nimbus分配任務後生成並監控worker(jvm進程)執行任務。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。

當使用上游模塊的數據進行計算、統計、分析時,就可以使用消息系統,尤其是分布式消息系統。Kafka使用Scala進行編寫,是一種分布式的、基於發布/訂閱的消息系統。Kafka的設計理念之一就是同時提供離線處理和實時處理,以及將數據實時備份到另一個數據中心,Kafka可以有許多的生產者和消費者分享多個主題,將消息以topic為單位進行歸納;Kafka發布消息的程序稱為procer,也叫生產者,預訂topics並消費消息的程序稱為consumer,也叫消費者;當Kafka以集群的方式運行時,可以由一個服務或者多個服務組成,每個服務叫做一個broker,運行過程中procer通過網路將消息發送到Kafka集群,集群向消費者提供消息。Kafka通過Zookeeper管理集群配置,選舉leader,以及在Consumer Group發生變化時進行rebalance。Procer使用push模式將消息發布到broker,Consumer使用pull模式從broker訂閱並消費消息。Kafka可以和Flume一起工作,如果需要將流式數據從Kafka轉移到hadoop,可以使用Flume代理agent,將Kafka當做一個來源source,這樣可以從Kafka讀取數據到Hadoop。

Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。它的作用主要有配置管理、名字服務、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那麼對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數據的可靠和一致性,同時它可以通過名字來獲取資源或者服務的地址等信息,可以監控集群中機器的變化,實現了類似於心跳機制的功能。

二、數據存儲

Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。

HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。HBase是一種Key/Value系統,部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用伺服器,來增加計算和存儲能力。

Phoenix,相當於一個Java中間件,幫助開發工程師能夠像使用JDBC訪問關系型資料庫一樣訪問NoSQL資料庫HBase。

Yarn是一種Hadoop資源管理器,可為上層應用提供統一的資源管理和調度,它的引入為集群在利用率、資源統一管理和數據共享等方面帶來了巨大好處。Yarn由下面的幾大組件構成:一個全局的資源管理器ResourceManager、ResourceManager的每個節點代理NodeManager、表示每個應用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。

Mesos是一款開源的集群管理軟體,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應用架構。

Redis是一種速度非常快的非關系資料庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內存的鍵值對數據持久化到硬碟中,使用復制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。

Atlas是一個位於應用程序與MySQL之間的中間件。在後端DB看來,Atlas相當於連接它的客戶端,在前端應用看來,Atlas相當於一個DB。Atlas作為服務端與應用程序通訊,它實現了MySQL的客戶端和服務端協議,同時作為客戶端與MySQL通訊。它對應用程序屏蔽了DB的細節,同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動後會創建多個線程,其中一個為主線程,其餘為工作線程。主線程負責監聽所有的客戶端連接請求,工作線程只監聽主線程的命令請求。

Ku是圍繞Hadoop生態圈建立的存儲引擎,Ku擁有和Hadoop生態圈共同的設計理念,它運行在普通的伺服器上、可分布式規模化部署、並且滿足工業界的高可用要求。其設計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數據分析能力。Ku不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數據分析的要求。Ku的應用場景很廣泛,比如可以進行實時的數據分析,用於數據可能會存在變化的時序數據應用等。

在數據存儲過程中,涉及到的數據表都是成千上百列,包含各種復雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數據進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁碟上的存儲。

三、數據清洗

MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算,」Map(映射)」和」Rece(歸約)」,是它的主要思想。它極大的方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統中。

隨著業務數據量的增多,需要進行訓練和清洗的數據會變得越來越復雜,這個時候就需要任務調度系統,比如oozie或者azkaban,對關鍵任務進行調度和監控。

Oozie是用於Hadoop平台的一種工作流調度引擎,提供了RESTful API介面來接受用戶的提交請求(提交工作流作業),當提交了workflow後,由工作流引擎負責workflow的執行以及狀態的轉換。用戶在HDFS上部署好作業(MR作業),然後向Oozie提交Workflow,Oozie以非同步方式將作業(MR作業)提交給Hadoop。這也是為什麼當調用Oozie 的RESTful介面提交作業之後能立即返回一個JobId的原因,用戶程序不必等待作業執行完成(因為有些大作業可能會執行很久(幾個小時甚至幾天))。Oozie在後台以非同步方式,再將workflow對應的Action提交給hadoop執行。

Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務之間的依賴關系問題。azkaban主要是由三部分構成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數的狀態信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調度以及對工作流執行過程中的監控等;Azkaban Executor Server用來調度工作流和任務,記錄工作流或者任務的日誌。

流計算任務的處理平台Sloth,是網易首個自研流計算平台,旨在解決公司內各產品日益增長的流計算需求。作為一個計算服務平台,其特點是易用、實時、可靠,為用戶節省技術方面(開發、運維)的投入,幫助用戶專注於解決產品本身的流計算需求。

四、數據查詢分析

Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數據,它完全依賴於HDFS和MapRece。可以將Hive理解為一個客戶端工具,將SQL操作轉換為相應的MapRece jobs,然後在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapRece程序的過程,它的出現可以讓那些精通SQL技能、但是不熟悉MapRece 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規模數據集上很方便地利用SQL 語言查詢、匯總、分析數據。

Hive是為大數據批量處理而生的,Hive的出現解決了傳統的關系型資料庫(MySql、Oracle)在大數據處理上的瓶頸 。Hive 將執行計劃分成map->shuffle->rece->map->shuffle->rece…的模型。如果一個Query會被編譯成多輪MapRece,則會有更多的寫中間結果。由於MapRece執行框架本身的特點,過多的中間過程會增加整個Query的執行時間。在Hive的運行過程中,用戶只需要創建表,導入數據,編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。

Impala是對Hive的一個補充,可以實現高效的SQL查詢。使用Impala來實現SQL on Hadoop,用來進行大數據實時查詢分析。通過熟悉的傳統關系型資料庫的SQL風格來操作大數據,同時數據也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapRece批處理,而是通過使用與商用並行關系資料庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統計函數查詢數據,從而大大降低了延遲。Impala將整個查詢分成一執行計劃樹,而不是一連串的MapRece任務,相比Hive沒了MapRece啟動時間。

Hive 適合於長時間的批處理查詢分析,而Impala適合於實時互動式SQL查詢,Impala給數據人員提供了快速實驗,驗證想法的大數據分析工具,可以先使用Hive進行數據轉換處理,之後使用Impala在Hive處理好後的數據集上進行快速的數據分析。總的來說:Impala把執行計劃表現為一棵完整的執行計劃樹,可以更自然地分發執行計劃到各個Impalad執行查詢,而不用像Hive那樣把它組合成管道型的map->rece模式,以此保證Impala有更好的並發性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。

Spark擁有Hadoop MapRece所具有的特點,它將Job中間輸出結果保存在內存中,從而不需要讀取HDFS。Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。Spark 是在 Scala 語言中實現的,它將 Scala 用作其應用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數據集。

Nutch 是一個開源Java 實現的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。

Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業級搜索應用的全文搜索伺服器。它對外提供類似於Web-service的API介面,用戶可以通過http請求,向搜索引擎伺服器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,並得到XML格式的返回結果。

Elasticsearch是一個開源的全文搜索引擎,基於Lucene的搜索伺服器,可以快速的儲存、搜索和分析海量的數據。設計用於雲計算中,能夠達到實時搜索,穩定,可靠,快速,安裝使用方便。

還涉及到一些機器學習語言,比如,Mahout主要目標是創建一些可伸縮的機器學習演算法,供開發人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數據流圖進行數值計算的開源軟體庫TensorFlow等,常用的機器學習演算法比如,貝葉斯、邏輯回歸、決策樹、神經網路、協同過濾等。

五、數據可視化

對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。主流的BI平台比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內的SmallBI和新興的網易有數(可點擊這里免費試用)等。

在上面的每一個階段,保障數據的安全是不可忽視的問題。

基於網路身份認證的協議Kerberos,用來在非安全網路中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網路環境下通信,向另一個實體以一種安全的方式證明自己的身份。

控制許可權的ranger是一個Hadoop集群許可權框架,提供操作、監控、管理復雜的數據許可權,它提供一個集中的管理機制,管理基於yarn的Hadoop生態圈的所有數據許可權。可以對Hadoop生態的組件如Hive,Hbase進行細粒度的數據訪問控制。通過操作Ranger控制台,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、資料庫、表、欄位許可權。這些策略可以為不同的用戶和組來設置,同時許可權可與hadoop無縫對接。

C. 資料庫技術的應用領域有哪些

資料庫的基本概念和應用領域
簡單地說,可以把資料庫定義為數據的集合,或者說資料庫就是為了實現一定的目的而按某種規則組織起來的數據的集合。資料庫管理系統就是管理資料庫的系統,即對資料庫執行一定的管理操作。目前使用的資料庫一般都是關系資料庫管理系統(RDBMS)。它可以從下面3個方面來定義。

● 關系(R):它表示一種特殊種類的資料庫管理系統,即通過尋找相互之間的共同元素使存放在一個表中的信息關聯到存放在另一個表中的信息。

● 管理系統(MS):是允許通過插入、檢索、修改或刪除記錄來使用數據的軟體。

● 資料庫:資料庫管理系統由一個互相關聯的數據集合和一組用以訪問這些數據的程序組成,這個數據集合通常被稱為資料庫(DataBase)。

資料庫是存儲信息的倉庫,以一種簡單、規則的方式進行組織。它具有以下4個特點:

● 資料庫中的數據集組織為表。

● 每個表由行和列組成。

● 表中每行為一個記錄。

● 記錄可包含幾段信息,表中每一列對應這些信息中的一段。

資料庫的應用領域非常廣泛,不管是家庭、公司或大型企業,還是政府部門,都需要使用資料庫來存儲數據信息。傳統資料庫中的很大一部分用於商務領域,如證券行業、銀行、銷售部門、醫院、公司或企業單位,以及國家政府部門、國防軍工領域、科技發展領域等。

隨著信息時代的發展,資料庫也相應產生了一些新的應用領域。主要表現在下面6個方面。

1.多媒體資料庫

這類資料庫主要存儲與多媒體相關的數據,如聲音、圖像和視頻等數據。多媒體數據最大的特點是數據連續,而且數據量比較大,存儲需要的空間較大。

2.移動資料庫

該類資料庫是在移動計算機系統上發展起來的,如筆記本電腦、掌上計算機等。該資料庫最大的特點是通過無線數字通信網路傳輸的。移動資料庫可以隨時隨地地獲取和訪問數據,為一些商務應用和一些緊急情況帶來了很大的便利。

3.空間資料庫

這類資料庫目前發展比較迅速。它主要包括地理信息資料庫(又稱為地理信息系統,即GIS)和計算機輔助設計(CAD)資料庫。其中地理信息資料庫一般存儲與地圖相關的信息數據;計算機輔助設計資料庫一般存儲設計信息的空間資料庫,如機械、集成電路以及電子設備設計圖等。

4.信息檢索系統

信息檢索就是根據用戶輸入的信息,從資料庫中查找相關的文檔或信息,並把查找的信息反饋給用戶。信息檢索領域和資料庫是同步發展的,它是一種典型的聯機文檔管理系統或者聯機圖書目錄。

5.分布式信息檢索

這類資料庫是隨著Internet的發展而產生的資料庫。它一般用於網際網路及遠距離計算機網路系統中。特別是隨著電子商務的發展,這類資料庫發展更加迅猛。許多網路用戶(如個人、公司或企業等)在自己的計算機中存儲信息,同時希望通過網路使用發送電子郵件、文件傳輸、遠程登錄方式和別人共享這些信息。分布式信息檢索滿足了這一要求。

6.專家決策系統

專家決策系統也是資料庫應用的一部分。由於越來越多的數據可以聯機獲取,特別是企業通過這些數據可以對企業的發展作出更好的決策,以使企業更好地運行。由於人工智慧的發展,使得專家決策系統的應用更加廣泛。

D. 資料庫技術的主要目的是什麼包括什麼

資料庫技術的主要目的是研究如何組織和存儲數據,如何高效地獲取和處理數據。包括:信息,數據,數據處理,資料庫,資料庫管理系統以及資料庫系統等。

資料庫技術是信息系統的一個核心技術。是一種計算機輔助管理數據的方法,它研究如何組織和存儲數據,如何高效地獲取和處理數據。是通過研究資料庫的結構、存儲、設計、管理以及應用的基本理論和實現方法,並利用這些理論來實現對資料庫中的數據進行處理、分析和理解的技術。

資料庫技術涉及到許多基本概念,主要包括:信息,數據,數據處理,資料庫,資料庫管理系統以及資料庫系統等。

地位:

資料庫技術是現代信息科學與技術的重要組成部分,是計算機數據處理與信息管理系統的核心。資料庫技術研究和解決了計算機信息處理過程中大量數據有效地組織和存儲的問題。

在資料庫系統中減少數據存儲冗餘、實現數據共享、保障數據安全以及高效地檢索數據和處理數據。資料庫技術的根本目標是要解決數據的共享問題。

E. 資料庫技術的應用領域有哪些

1、多媒體資料庫

這類資料庫主要存儲與多媒體相關的數據,如聲音、圖像和視頻等數據。多媒體數據最大的特點是數據連續,而且數據量比較大,存儲需要的空間較大。

2、移動資料庫

該類資料庫是在移動計算機系統上發展起來的,如筆記本電腦、掌上計算機等。該資料庫最大的特點是通過無線數字通信網路傳輸的。移動資料庫可以隨時隨地地獲取和訪問數據,為一些商務應用和一些緊急情況帶來了很大的便利。

3、資料庫技術在多媒體技術方面的應用。

相對比傳統的資料庫技術,這種結合了多媒體技術的資料庫,以多媒體技術的優勢使得數據界面的豐富化並對於兩者結合所可能帶來的相關技術問題給予了充分解決,相關資料庫方面的安全性得到了很好的提高。

多媒體資料庫設計中有很多問題需要解決:用戶介面支持方面、資料庫組織與存儲方面、媒體種類增加方面信息的分布影響方面。

4、信息檢索系統

信息檢索就是根據用戶輸入的信息,從資料庫中查找相關的文檔或信息,並把查找的信息反饋給用戶。信息檢索領域和資料庫是同步發展的,它是一種典型的聯機文檔管理系統或者聯機圖書目錄。

5、分布式信息檢索

這類資料庫是隨著Internet的發展而產生的資料庫。它一般用於網際網路及遠距離計算機網路系統中。特別是隨著電子商務的發展,這類資料庫發展更加迅猛。

許多網路用戶(如個人、公司或企業等)在自己的計算機中存儲信息,同時希望通過網路使用發送電子郵件、文件傳輸、遠程登錄方式和別人共享這些信息。分布式信息檢索滿足了這一要求。

F. 最近幾年產生的新科技有哪些

近年來涌現出了許多新的敬野科技,以下是其中一些:

1. 人工智慧:通過機器學習等技術構前稿純建出智能系統,實現自主學習和決策。

2. 區塊鏈:一種去中心化的技術,可以讓信息或者交易數據記錄在鏈上,保證數據安全性和不可篡改,被廣泛運用於數字貨幣、區塊鏈游戲等領域。

3. 5G網路:第五代移動通信網路,具有更快的下載和上傳速度、更低的延遲和更強的連接能力。

4. AR/VR技術:增強現實和虛擬現實技術,可以帶來更加沉浸式的體驗。

5. 無人機和自動駕駛技術:通過激光雷達、攝像頭等技術實現智能導航和自主控制,應用於農業、慧咐物流、交通等領域。

6. 腦機介面技術(BCI):利用電極等技術連接腦部和計算機,實現直接與計算機進行交互,可以應用於醫療、游戲等領域。

7. 生物列印技術:通過3D列印等技術,可以製造出人體細胞、人體器官等復雜的生命物質。

閱讀全文

與資料庫有哪些新科技相關的資料

熱點內容
沙河服裝批發市場地鐵哪個站 瀏覽:883
股票交易的具體流程是什麼 瀏覽:988
江西洗衣凝珠代理費用多少 瀏覽:519
招標代理商怎麼找 瀏覽:202
立昂技術為什麼三季報利潤下降 瀏覽:32
姚安娜代言產品銷量怎麼樣 瀏覽:888
為什麼報過了查不到教資信息 瀏覽:700
打算怎麼學好電子技術 瀏覽:674
哪裡二手交易靠譜 瀏覽:23
如何查找物品市場最低價 瀏覽:138
雅培降脂產品叫什麼 瀏覽:806
兩個數據差異不顯著怎麼辦 瀏覽:373
iot行業主要有哪些產品 瀏覽:172
微信的信息怎麼一條一條回復 瀏覽:872
美團發信息怎麼沒有聲音 瀏覽:295
招商證券交易費率哪裡查到 瀏覽:732
大荔西北職業技術學校多少學生 瀏覽:165
怎麼掙錢代理 瀏覽:359
理工男技術男什麼意思 瀏覽:668
數據線如何變成指示燈 瀏覽:406