導航:首頁 > 數據處理 > 數據分析mysql要學習到什麼程度

數據分析mysql要學習到什麼程度

發布時間:2024-03-09 13:07:58

數據分析需要掌握哪些知識

數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。

而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。

當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。

對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。數據可視化數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。

對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。

Ⅱ 數據分析需要掌握哪些知識

數據分析定義

數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷,以便採取適當行動。是有組織有目的地收集數據、分析數據,使之成為信息的過程。

數據分析分類

數據分析劃分為描述性統計分析、探索性數據分析以及驗證性數據分析;其中,探索性數據分析側重於在數據之中發現新的特徵,而驗證性數據分析則側重於已有假設的證實或證偽。

數據分析常用方法

1、PEST分析:

是利用環境掃描分析總體環境中的政治(Political)、經濟(Economic)、社會(Social)與科技(Technological)等四種因素的一種模型。這也是在作市場研究時,外部分析的一部分,能給予公司一個針對總體環境中不同因素的概述。這個策略工具也能有效的了解市場的成長或衰退、企業所處的情況、潛力與營運方向。一般用於宏觀分析。

2、SWOT分析:

又稱優劣分析法或道斯矩陣,是一種企業競爭態勢分析方法,是市場營銷的基礎分析方法之一,通過評價自身的優勢(Strengths)、劣勢(Weaknesses)、外部競爭上的機會(Opportunities)和威脅(Threats),用以在制定發展戰略前對自身進行深入全面的分析以及競爭優勢的定位。而此方法是Albert Humphrey所提。

3、5W2H分析:

用五個以W開頭的英語單詞和兩個以H開頭的英語單詞進行設問,發現解決問題的線索,尋找發明思路,進行設計構思,從而搞出新的發明項目具體:

(1)WHAT——是什麼?目的是什麼?做什麼工作?

(2)WHY——為什麼要做?可不可以不做?有沒有替代方案?

(3)WHO——誰?由誰來做?

(4)WHEN——何時?什麼時間做?什麼時機最適宜?

(5)WHERE——何處?在哪裡做?

(6)HOW ——怎麼做?如何提高效率?如何實施?方法是什麼?

(7)HOW MUCH——多少?做到什麼程度?數量如何?質量水平如何?費用產出如何?

4、7C羅盤模型:

7C模型包括

(C1)企業很重要。也就是說,Competitor:競爭對手,Organization:執行市場營銷或是經營管理的組織,Stakeholder:利益相關者也應該被考慮進來。

(C2)商品在拉丁語中是共同方便共同幸福的意思,是從消費者的角度考慮問題。這也和從消費者開始考慮問題的整合營銷傳播是一致的,能體現出與消費者相互作用進而開發出值得信賴的商品或服務的一種哲學。經過完整步驟創造出的商品可以稱之為商品化。

(C3)成本不僅有價格的意思,還有生產成本、銷售成本、社會成本等很多方面。

(C4)流通渠道表達商品在流動的含義。創造出一個進貨商、製造商、物流和消費者共生的商業模式。作為流通渠道來說,網路銷售也能算在內。

(C5)交流

(C6)消費者

N = 需求(Needs):生活必需品,像水、衣服、鞋。
W = 想法(Wants):想得到的東西,像運動飲料、旅遊鞋。
S = 安全(Security):安全性,像核電、車、食品等物品的安全。
E = 教育(Ecation):對消費者進行教育,為了能夠讓消費者也和企業一樣對商品非常了解,企業應該提供給消費者相應的知識信息。
(C7)環境

N = 國內和國際:國內的政治、法律和倫理環境及國際環境,國際關系。
W = 天氣:氣象、自然環境,重大災害時經營環境會放生變化,適應自然的經營活動是必要的。像便利店或是部分超市就正在實行。
S = 社會和文化:網路時代的社會、福利及文化環境理所當然應該成為考慮因素。
E = 經濟:經濟環境是對經營影響最大的,以此理所當然應該成為考慮因素。7C羅盤模型是一個合作市場營銷的工具。
5、海盜指標法AARRR:是互聯網常用的「用戶增長模型」,黑客增長模型:

Acquisition:獲取用戶
Activation:提高活躍度
Retention:提高留存率
Revenue:獲取收入
Refer:自傳播

數據分析常用工具

日常數據分析用的最多的還是辦公軟體尤其excel、word、ppt,數據存儲處理可能用到一些資料庫結合access用,另外目前一般公司小型關系資料庫用mysql的還是比較多免費、輕量級,還有較多的也在用pg。

其次分析師是用一些專業的分析軟體spss,sas,自助分析用的BI軟體平台如:finebi、tableau等。

finebi

其實想強調的是分析師40%-60%的時間可能會花在數據的獲取、處理和准備上,所以最好能會點sql,個人覺得對於分析師與其去了解資料庫,不如好好去學下sql,因為sql是標准化的數據查詢語言,所有的關系型資料庫包括一些開源的資料庫甚至各公司內部的數據平台都對它有良好的支持。最後對於第三方的一些數據收集或者一些跨平台的數據處理,包括一些分析可以用finebi。

數據分析流程

有了 這些基礎的理論和分析方法後,接下來具體的分析流程可參考:

1.提出問題(需求) 2.結論/假設 3.數據准備 4.數據分析 5.報告生成 結論驗證。

我們按照如上的分析步驟來個示例:

XX產品首銷,哪些用戶最有可能來購買?應該給哪些用戶進行營銷?

第一步首先是提出了問題,有了需求。

第二步分析問題,提出方案,這一步非常重要,正如上面提到的第二三類的數據分析本身就是一個假設檢驗的過程,如果這一步不能很好的假設,後續的檢驗也就無從談起。主要需要思考下從哪些方面來分析這個問題。

可以從三個方面:(PS:這里對於一些常規的屬性比如:性別、年齡、地區分布了這些基本,老大早已心中有數,就不再看了)

1.曾經購買過跟XX產品相似產品的用戶,且當前使用機型是XX產品上一或幾代產品,有換機意願需求的。

2.用戶的關注程度用戶是否瀏覽了新品產品站,是否搜索過新品相關的信息,是否參加了新品的活動。

3.用戶的消費能力歷史消費金額、歷史購機數量、本年度購機金額、本年度購機數量、最近一次購機時間及金額等。

第三步准備數據:

創建分析表,搜集數據 這一步基本是最花時間的,這時候就是考量你的數據平台、數據倉庫的時候了,倉庫集成的好,平台易用的話時間應該不用太長。

第四步數據分析:筆者是把數據導入到finebi進行分析的,也可以用python,其實用excel也非常好,只是筆者對excel的有些處理不是很擅長。

第五步就是圖表呈現,報告的表達了,最後我們驗證得到的一個結論就是:購買過同類產品,關注度越高,復購周期越近的用戶越最容易再次復購。

註:想要獲取33個好用數據分析工具,可以私聊回復我「工具」獲得!

Ⅲ 數據分析師需要學習什麼

大家都知道,現在有很多人想成為數據分析師,數據分析師需要學習很多的知識,這是毋庸置疑的,但是對數據分析師需要學習的課程不是很了解,一般來說,數據分析師需要學習很多的知識。對於數據分析師所要學習的課程來說需要分為技術學習、統計理論、表達能力三個層面進行學習,這些層面是數據分析的大體內容,在這篇文章中我們就從這三個層面進行分析,並且講解每個層面需要學習的技能。
數據分析的技術學習涉及到了很多的工作內容。首先,我們需要對資料庫或者其他渠道中獲得數據。很多人對於數據獲取方面還是要靠很多人,在現在對於數據的獲取只能靠自己了,對於數據的獲取是需要sql工具,而sql工具就是為了統計取數而生的工具,而sql工具一般是解決中型數據,Excel可以應對小型數據的分析。當然,還需要學習r語言、Python、spss等數據,這樣才能夠提供數據的挖掘能力。當然還需要學習資料庫的內容,將數據納入資料庫的本領也需要掌握,學好了這些才能夠做好數據分析。所以說,我們一定要重視起來對數據分析工具的使用。
而統計也是數據分析中最重要的工作,統計學是數據分析中至關重要的課程,不管是在業務方面發展還是在技術方面發展都需要重視數據分析工作,大家在學習統計方面知識的時候一定要學會裡面的數據分析思維框架,這樣才能夠對日後的數據分析工作有很好的幫助。
最後我們說一下表達能力,其實不管表達能力在哪個工作中都是一個重要的技能,如果你肚子里有很多東西,但是表達不出來,也是不算是一個優秀的數據分析師,所以說,一個數據分析師一定要做到胸有成竹,這樣就能夠讓別人輕松的理解你的想法。擁有一個好的表達能力至關重要,在分析數據以後需要給客戶闡述數據分析的結果,不但有很強的語言表達能力,還要會製作ppt,在講述和製作ppt的時候需要有嚴密的邏輯,這樣才有說服力,在做ppt的時候還需要對語言進行組織,力爭做到圖文並茂,這樣才能夠讓人信服你的數據分析結果。
關於數據分析師需要學習的內容我們就給大家介紹到這里了,如果大家想走進數據分析這一行業的時候一定提前了解好這些內容,這樣有利於自己設計學習計劃,從而高效的學習知識。當然,大家要想了解更多有關數據分析的相關情況,請持續關注我們吧。

Ⅳ 公司要做數據分析我要學習什麼

學什麼?

數據分析要學的內容大致分為6個板塊,分別是:

Excel

精通Excel分析工具,掌握Excel經典函數,准確快速地完成數據清洗,利用Excel數據透視及可視化,可以透過現象看本質。

MySQL

理解MySQL資料庫相關概念及存儲原理,掌握SQL基本的增、刪、改、查等語法掌握資料庫性能調優策略,熟練使用SQL進行數據清洗與數據規范化。

BI商業智能工具

了解商業智能的核心價值,精通FineReport、FineBI,快速挖掘數據價值,掌握行業場景應用。

Python

學習Python基本編程語言知識,了解Python程序的計算機運行原理,能夠使用Python編程處理工作中的重復性工作。 掌握網路數據抓取技術,Python資料庫應用開發,實現Python數據可視化操作,提高數據收集和數據分析能力。 掌握Python數據分析處理基礎庫,具有應用Python語言解決數據分析中實際問題能力。

數據分析思維與理論

掌握微積分、線性代數、概率論、參數估計、假設檢驗、方差分析等數理統計基礎 掌握基本的數學、統計學知識,學習數據運營方法論、機器學習夯實基礎,提升數據敏感性,建立數據思維和數據素養。

掌握如何撰寫行業分析報告和數據分析項目流程,能夠獨立完成數據分析項目。 掌握常見的數據運營方法如AARRR、漏斗、ABTset、描述性統計分析、相關分析、指數系統搭建等,培養利用多種數據分析方法解決實際工作問題能力。

機器學習

掌握機器學習常用經典演算法原理及sklearn代碼的實現、機器學習演算法的選取、調優及模型訓練、神經網路的特點及原理,增加個人核心競爭力,擁有能夠用相關數據挖掘演算法為解決實際問題能力;奠定人工智慧演算法入門基礎。

如何學?

至少花三個月掌握技術

「磨刀不誤砍柴工」,要想從為「工人」,甚至熟悉工,也需要很多技能,因為怎麼說數據分析師也是技術工種。我覺得至少你要花3個月時間來學習一些最基礎的知識。

Ⅳ 數據分析需要掌握些什麼知識

數據分析需要掌握的知識:
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。
2、分析工具
對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
3、分析思維
比如結構化思維、思維導圖、或網路腦圖、麥肯錫式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、資料庫知識
大數據大數據,就是數據量很多,Excel就解決不了這么大數據量的時候,就得使用資料庫。如果是關系型資料庫,比如Oracle、mysql、sqlserver等等,你還得要學習使用SQL語句,篩選排序,匯總等等。非關系型資料庫也得要學習,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起碼常用的了解一兩個,比如Hbase,Mongodb,redis等。
5、開發工具及環境
比如:Linux OS、Hadoop(存儲HDFS,計算Yarn)、Spark、或另外一些中間件。目前用得多的開發工具Java、python等等語言工具。

Ⅵ 從零開始學數據分析,什麼程度可以找工作,如何計劃學習方案

1. 第一階段(一般崗位叫數據專員)

基本學會excel(VBA最好學會;會做透視表;熟練用篩選、排序、公式),做好PPT。這樣很多傳統公司的數據專員已經可以做了

2. 第二階段(數據專員~數據分析師)

這一階段要會SQL,懂業務,加上第一階段的那些東西。大多數傳統公司和互聯網小運營、產品團隊夠用了。

3. 第三階段(數據分析師)

統計學熟練(回歸、假設檢驗、時間序列、簡單蒙特卡羅),可視化,PPT和excel一定要溜。這些技術就夠了,能應付大多數傳統公司業務和互聯網業務。

4. 第四階段(分裂)

數據分析師(數據科學家)、BI等:這部分一般是精進統計學,熟悉業務,機器學習會使用(調參+選模型+優化),取數、ETL、可視化啥的都是基本姿態。

可視化工程師:這部分國內比較少,其實偏重前端,會high charts,d3.js, echarts.js。技術發展路線可以獨立,不在這四階段,可能前端轉行更好。

ETL工程師:顧名思義,做ETL的。

大數據工程師:熟悉大數據技術,hadoop系二代。

數據工程師(一部分和數據挖掘工程師重合):機器學習精通級別(往往是幾種,不用擔心不是全部,和數據分析師側重點不同,更需要了解組合模型,理論基礎),會組合模型形成數據產品;計算機基本知識(包括linux知識、軟體工程等);各類資料庫(RDBMS、NoSQL(4大類))

數據挖掘:和上基本相同。

爬蟲工程師:顧名思義,最好http協議、tcp/ip協議熟悉。技術發展路線可以獨立,不在這四階段

發現回答的有點文不對題額,不過大致是所有從底層數據工作者往上發展的基本路徑。往數據發展的基本學習路徑可以概括為以下內容:

1. EXCEL、PPT(必須精通)

數據工作者的基本姿態,話說本人技術並不是很好,但是起碼會操作;要會大膽秀自己,和業務部門交流需求,展示分析結果。技術上回VBA和數據透視就到頂了。

2. 資料庫類(必須學)

初級只要會RDBMS就行了,看公司用哪個,用哪個學哪個。沒進公司就學MySQL吧。

NoSQL可以在之後和統計學啥的一起學。基本的NoSQL血MongoDB和Redis(緩存,嚴格意義上不算資料庫),然後(選學)可以了解各類NoSQL,基於圖的資料庫Neo4j,基於Column的資料庫BigTable,基於key-value的資料庫redis/cassendra,基於collection的資料庫MongoDB。

3. 統計學(必須學)

如果要學統計學,重要概念是會描述性統計、假設檢驗、貝葉斯、極大似然法、回歸(特別是廣義線性回歸)、主成分分析。這些個用的比較多。也有學時間序列、bootstrap、非參之類的,這個看自己的意願。

其他數學知識:線性代數常用(是很多後面的基礎),微積分不常用,動力系統、傅里葉分析看自己想進的行業了。

4. 機器學習(數據分析師要求會選、用、調)

常用的是幾個線性分類器、聚類、回歸、隨機森林、貝葉斯;不常用的也稍微了解一下;深度學習視情況學習。

5. 大數據(選學,有公司要求的話會用即可,不要求會搭環境)

hadoop基礎,包括hdfs、map-rece、hive之類;後面接觸spark和storm再說了。

6. 文本類(選學,有公司要求的話會用即可)

這部分不熟,基本要知道次感化、分詞、情感分析啥的。

7. 工具類

語言:非大數據類R、Python最多(比較geek的也有用julia的,不差錢和某些公司要求的用SAS、Matlab);大數據可能還會用到scala和java。

閱讀全文

與數據分析mysql要學習到什麼程度相關的資料

熱點內容
包頭輕工職業技術學院多少分進 瀏覽:219
今年雙十一交易額在多少 瀏覽:422
市場營銷中介包括哪些 瀏覽:838
為什麼英德農產品賣得那麼火 瀏覽:851
在哪些平台如何才能進行外匯交易 瀏覽:616
歷史價格數據怎麼存儲比較好 瀏覽:380
如何決定一個交易者的行為 瀏覽:316
在交易貓賣號怎麼改 瀏覽:641
代理商超市欠貨款怎麼辦 瀏覽:494
刮刮卡代理點怎麼做 瀏覽:328
如何查詢養老金的信息 瀏覽:605
小香港黃金交易哪個平台好 瀏覽:733
形態學實驗技術是什麼 瀏覽:520
學習電工維修技術哪裡學 瀏覽:495
華為手機防觸摸程序哪裡關掉 瀏覽:697
怎麼加盟代理項目 瀏覽:798
白雲旅遊職業技術學校怎麼樣 瀏覽:46
實體店代理奶粉怎麼做 瀏覽:862
vb創新產品部是做什麼 瀏覽:847
市場主要內容是什麼 瀏覽:72