❶ 常見的數據統計方法有什麼
常見的數據統計方法有:表格、折線統計圖、條形統計圖、扇形統計圖。舉一個例子來具體分說明一下,比如說:我在淘寶開了個童裝店,為了方便統計每半個月的銷售額,現在用以上這四種統計方法來演示一下。
1.表格就是通過畫格子的方式來統計數據,在這里可以畫三行橫線,得到兩條細長的格子,再把這兩行均勻的分為15個上下格子。橫一為日期,橫二為銷售額,半個月下來都填進去就一目瞭然。
2.折線是通過畫點,把15天的銷售額都連成一條折線,通過上下起伏來看波動的數據。先畫一「L」形,橫線作日期,豎線作銷售額,銷售額可以自己寫一個數,一直往上數與數之間相差一樣。均勻的把橫豎線分為15份,每個日期對應多少銷售額,就在「L」的半框里,以對應的日期和銷售畫橫線和豎線,交叉的位置取一點。然後每天如此,再用直線連接這15個點,就能清楚的看到這半個月哪一天銷售最好,哪一天銷售墊底。
3.條形統計圖作出的是條狀的數據統計圖,和折線統計圖一樣,畫「L」,橫為日期豎為銷售額。只不過這里不畫點點,畫倒立的長方形,然後通過高高低低的條形圖來分析半個月的銷售額。
4.扇形統計圖就是把一個圓形,平均分為15份,一個月下來把所有的日銷售額加起來,用當天的數據除以總數,乘以百分數。每一分里寫上日期和當天銷售額占總數的百分比,用這個百分數來統計半個月的數據。每個圖的做法都不一樣,但表達的意思都是同樣的,這就是日常生活中最常見的幾種數據統計。
❷ 5種常用的統計學方法是什麼
1、大量觀察法
(2)用什麼方法統計數據擴展閱讀:
(一)大量觀察法
這是統計活動過程中搜集數據資料階段(即統計調查階段)的基本方法:即要對所研究現象總體中的足夠多數的個體進行觀察和研究,以期認識具有規律性的總體數量特徵。大量觀察法的數理依據是大數定律,大數定律是指雖然每個個體受偶然因素的影響作用不同而在數量上幾存有差異。
但對總體而言可以相互抵消而呈現出穩定的規律性,因此只有對足夠多數的個體進行觀察,觀察值的綜合結果才會趨向穩定,建立在大量觀察法基礎上的數據資料才會給出一般的結論。統計學的各種調查方法都屬於大量觀察法。
(二)、統計分組法
由於所研究現象本身的復雜性、差異性及多層次性,需要我們對所研究現象進行分組或分類研究,以期在同質的基礎上探求不同組或類之間的差異性。統計分組在整個統計活動過程中都佔有重要地位,在統計調查階段可通過統計分組法來搜集不同類的資料,並可使抽樣調查的樣本代表性得以提高(即分層抽樣方式);
在統計整理階段可以通過統計分組法使各種數據資料得到分門別類的加工處理和儲存,並為編制分布數列提供基礎;在統計分析階段則可以通過統計分組法來劃分現象類型、研究總體內在結構、比較不同類或組之間的差異(顯著性檢驗)和分析不同變數之間的相關關系。統計學中的統計分組法有傳統分組法、判別分析法和聚類分析法等。
(三)、綜合指標法
統計研究現象的數量方面的特徵是通過統計綜合指標來反映的。所謂綜合指標,是指用來從總體上反映所研究現象數量特徵和數量關系的范疇及其數值,常見的有總量指標、相對指標,平均指標和標志變異指標等。
綜合指標法在統計學、尤其是社會經濟統計學中佔有十分重要的地位,是描述統計學的核心內容。如何最真實客觀地記錄、描述和反映所研究現象的數量特徵和數量關系,是統計指標理論研究的一大課題。
❸ 常用統計方法有哪些
1、計量資料的統計方法
分析計量資料的統計分析方法可分為參數檢驗法和非參數檢驗法。
參數檢驗法主要為t檢驗和 方差分析(ANOVN,即F檢驗)等,兩組間均數比較時常用t檢驗和u檢驗,兩組以上均數比較時常用方差分析;非參數檢驗法主要包括秩和檢驗等。t檢驗可分為單組設計資料的t檢驗、配對設計資料的t檢驗和成組設計資料的t檢驗;當兩個小 樣本比較時要求兩 總體分布為 正態分布且方差齊性,若不能滿足以上要求,宜用t 檢驗或非參數方法( 秩和檢驗)。 方差分析可用於兩個以上 樣本均數的比較,應用該方法時,要求各個樣本是相互獨立的隨機樣本,各樣本來自正態總體且各處理組總體方差齊性。根據設計類型不同,方差分析中又包含了多種不同的方法。對於 定量資料,應根據所採用的設計類型、資料所具備的條件和分析目的,選用合適的統計分析方法,不應盲目套用t檢驗和 單因素方差分析。
2、計數資料的統計方法
計數資料的統計方法主要針對四格表和R×C表利用檢驗進行分析。
檢驗或u檢驗,若不能滿足 檢驗:當計數資料呈配對設計時,獲得的四格表為配對四格表,其用到的檢驗公式和校正公式可參考書籍。 R×C表可以分為雙向無序,單向有序、雙向有序屬性相同和雙向有序屬性不同四類,不同類的行列表根據其研究目的,其選擇的方法也不一樣。
3、等級資料的統計方法
等級資料(有序變數)是對性質和類別的等級進行分組,再清點每組觀察單位個數所得到的資料。在臨床醫學資料中,常遇到一些定性指標,如臨床療效的評價、疾病的臨床分期、病症嚴重程度的臨床分級等,對這些指標常採用分成若干個等級然後分類計數的辦法來解決它的量化問題,這樣的資料統計上稱為等級資料。
統計方法的選擇:
統計資料豐富且錯綜復雜,要想做到合理選用統計分析方法並非易事。對於同一 個資料,若選擇不同的統計分析方法處理,有時其結論是截然不同的。
正確選擇統計方法的依據是:
①根據研究的目的,明確研究試驗設計類型、研究因素與水平數;
②確定數據特徵(是否正態分布等)和樣本量大小;
③ 正確判斷統計資料所對應的類型(計量、計數和等級資料),同時應根據統計方法的適宜條件進行正確的統計量值計算;
最後,還要根據專業知識與資料的實際情況,結合統計學原則,靈活地選擇統計分析方法。
❹ 常用統計分析方法
數據分析師針對不同業務問題可以製作各種具體的數據模型去分析問題,運用各種分析方法去探索數據,這里介紹最常用的三種分析方法,希望可以對您的工作有一定的的幫助
文中可視化圖表均使用DataFocus數據分析工具製作。
1.相關分析
相關分析顯示變數如何與另一個變數相關。例如,它顯示了計件工資是否會帶來更高的生產率。
2.回歸分析
回歸分析是對一個變數值與另一個變數值之間差異的定量預測。回歸模擬依賴變數和解釋變數之間的關系,這些變數通常繪制在散點圖上。您還可以使用回歸線來顯示這些關系是強還是弱。
另請注意,散點圖上的異常值非常重要。例如,外圍數據點可能代表公司最關鍵供應商或暢銷產品的輸入。但是,回歸線的性質通常會讓您忽略這些異常值。
3.假設檢驗
假設檢驗是基於某些假設並從樣本到人口的數理統計中的統計分析方法。主要是為了解決問題的需要,對整體研究提出一些假設。通常,比較兩個統計數據集,或者將通過采樣獲得的數據集與來自理想化模型的合成數據集進行比較。提出了兩個數據集之間統計關系的假設,並將其用作理想化零假設的替代方案。建議兩個數據集之間沒有關系。
在掌握了數據分析的基本圖形和分析方法之後,數據分析師認為有一點需要注意:「在沒有確認如何表達你想要解決的問題之前,不要開始進行數據分析。」簡而言之,如果您無法解釋您試圖用數據分析解決的業務問題,那麼沒有數據分析可以解決問題。
❺ 有哪些統計技術可以用於數據統計分析
摘要 Boosting:這種方法用於通過不同的模型計算結果,然後使用加權平均法計算結果的平均值。通過綜合該方法的優點和缺點以及不同的加權公式,可以對大量的輸入數據鏈獲得適當的預測效率。
❻ 什麼方法用來統計分析數據比較好
Excel可以滿足絕大部分統計分析的需求,如描述性統計(均值、方差、標准差等);如果是多組數據,則可以用回歸分析、相關性分析等功能,視需求而定。
如果要做數據挖掘,如聚類分析、因子分析、神經網路,就要用專業的工具了,如spss、sas等
❼ 數據統計分析方法有哪些
1、分解主題分析
所謂分解主題分析,是指對於不同分析要求,我們可以初步分為營銷主題、財務主題、靈活主題等,然後將這些大的主題逐步拆解為不同小的方面來進行分析。
2、鑽取分析
所謂鑽取分析,是指改變維的層次,變換分析的粒度。按照方向方式分為:向上和向下鑽取。向上鑽取是在某一維上將低層次的細節數據概括到高層次的匯總數據,或者減少維數;是自動生成匯總行的分析方法。向下鑽取是從匯總數據深入到細節數據進行觀察或增加新維的分析方法。
3、常規比較分析
所謂常規比較分析,是指一般比較常見的對比分析方法,例如有時間趨勢分析、構成分析、同類比較分析、多指標分析、相關性分析、分組分析、象限分析等。
4、大型管理模型分析
所謂大型管理模型分析,是指依據各種成熟的、經過實踐論證的大型管理模型對問題進行分析的方法。比較常見的大型管理模型分析包括RCV模型、阿米巴經營、品類管理分析等。
5、財務和因子分析
所謂財務和因子分析,主要是指因子分析法在財務信息分析上的廣泛應用。因子分析的概念起源於20世紀初的關於智力測試的統計分析,以最少的信息丟失為前提,將眾多的原有變數綜合成較少的幾個綜合指標,既能大大減少參與數據建模的變數個數,同時也不會造成信息的大量丟失,達到有效的降維。比較常用的財務和因子分析法有杜邦分析法、EVA分析、財務指標、財務比率、坪效公式、品類公式、流量公式等。
6、專題大數據分析
所謂專題大數據分析,是指對特定的一些規模巨大的數據進行分析。大數據常用來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。常見特徵是數據量大、類型繁多、價值密度低、速度快、時效低。比較常見的專題大數據分析有:市場購物籃分析、重力模型、推薦演算法、價格敏感度分析、客戶分組分析等分析方法。
❽ 常用統計分析方法有哪些
1、對比分析法
對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。
橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。
縱向對比指的是同一事物在時間維度上的變化,例如,環比、同比和定基比,也就是本月銷售額與上月銷售額的對比,本年度1月份銷售額與上一年度1月份銷售額的對比,本年度每月銷售額分別與上一年度平均銷售額的對比等。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。
2、分組分析法
分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。
根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。
3、預測分析法
預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡。
最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。
5、AB測試分析法
AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。
例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。
除此之外,要想做好數據分析,讀者還需掌握一定的數學基礎,例如,基本統計量的概念(均值、方差、眾數、中位數等),分散性和變異性的度量指標(極差、四分位數、四分位距、百分位數等),數據分布(幾何分布、二項分布等),以及概率論基礎、統計抽樣、置信區間和假設檢驗等內容,通過相關指標和概念的應用,讓數據分析結果更具專業性。
❾ 統計學中常用的數據分析方法有哪些
1、描述統計
描述統計是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變數之間關系進行估計和描述的方法。描述統計分為集中趨勢分析、離中趨勢分析和相關分析三大部分。
2、假設檢驗
參數檢驗:參數檢驗是在已知總體分布的條件下(一般要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗。
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。
3、信服分析
介紹:信度(Reliability)即可靠性,它是指採用同樣的方法對同一對象重復測量時所得結果的一致性程度。
信度指標多以相關系數表示,大致可分為三類:穩定系數(跨時間的一致性),等值系數(跨形式的一致性)和內在一致性系數(跨項目的一致性)。信度分析的方法主要有以下四種:重測信度法、復本信度法、折半信度法、α信度系數法。