1. 信號調制與解調的種類
在通信中,我們常常採用的調制方式有以下幾種:
(一)模擬調制:用連續變化的信號去調制一個高頻正弦波
主要有:1.幅度調制(調幅AM,雙邊帶調制DSBSC,單邊帶調幅SSBSC,殘留邊帶調制VSB以及獨立邊帶ISB);
2.角度調制(調頻FM,調相PM)兩種。因為相位的變化率就是頻率,所以調相波和調頻波是密切相關的;
(二)數字調制:用數字信號對正弦或餘弦高頻振盪進行調制
主要有:1.振幅鍵控ASK;
2.頻率鍵控FSK;
3.相位鍵控PSK;
(三)脈沖調制:用脈沖序列作為載波
主要有:1.脈沖幅度調制(PAM:Pulse Amplitude Molation);
2.脈寬調制(PDM:Pulse Duration Molation);
3.脈位調制(PPM:Pulse Position Molation);
4.脈沖編碼調制(PCM:Pulse Code Molation) ;
隨著通信業務量的增加,頻譜資源日趨緊張,為了提高系統的容量,信道間隔已由最初的100kHz減少到25kHz,並將進一步減少到12.5kHz,甚至更小,由於數字通信具有建網靈活,容易採用數字差錯控制技術和數字加密,便於集成化,並能夠進入ISDN網,所以通信系統都在由模擬制式向數字制式過渡。
因此系統中必須採用數字調制技術,然而一般的數字調制技術,如ASK、PSK和FSK因傳輸效率低而無法滿足移動通信的要求,為此,需要專門研究一些抗干擾性強、誤碼性能好、頻譜利用率高的數字調制技術,盡可能地提高單位頻譜內傳輸數據的比特率,以適用於移動通信窄帶數據傳輸的要求。如
最小頻移鍵控(MSK-Minimum Shift Keying);
高斯濾波最小頻移鍵控(GMSK-Gaussian Filtered Minimum Shift Keying);
四相相移鍵控(QPSK-Quadrature Reference Phase Shift Keying);
交錯正交四相相移鍵控(OQPSK-Offset Quadrature Reference Phase Shift Keying);
四相相對相移鍵控(DQPSK-Differential Quadrature Reference Phase Shift Keying);
π/4正交相移鍵控(π/4-DQPSK-Differential Quadrature Reference Phase Shift Keying);
已在數字蜂房移動通信系統中得到廣泛應用。
2. 調制和解調分別是什麼意思
調制:
對信號源的信息進行處理加到載波上,使其變為適合於信道傳輸的形式的過程,即令載波隨信號而改變的技術,叫做調制。
一般來說,信號源的信息(也稱為信源)含有直流分量和頻率較低的頻率分量,稱為基帶信號。基帶信號往往不能作為傳輸信號,因此必須把基帶信號轉變為一個相對基帶頻率而言頻率非常高的信號以適合於信道傳輸。這個信號叫做已調信號,而基帶信號叫做調制信號。調制是通過改變高頻載波即消息的載體信號的幅度、相位或者頻率,使其隨著基帶信號幅度的變化而變化來實現的。
解調:
從已調信號中恢復出原調制信號的過程,叫做解調。
解調是調制的逆過程。調制方式不同,解調方法也不一樣。與調制的分類相對應,解調可分為正弦波解調(有時也稱為連續波解調)和脈沖波解調。正弦波解調還可再分為幅度解調、頻率解調和相位解調,此外還有一些變種如單邊帶信號解調、殘留邊帶信號解調等。同樣,脈沖波解調也可分為脈沖幅度解調、脈沖相位解調、脈沖寬度解調和脈沖編碼解調等。對於多重調制需要配以多重解調。
3. 第三代移動通信系統常用調制解調方式有哪些
1、TD-SCDMA技術。TD-SCDMA是中國唯一提交的關於第三代移動通信的標准技術,它使用了第二代和第三代移動通信中的所有接入技術,包括TDMA、CDMA和SDMA,其中最關鍵的創新部分是SDMA。SDMA可以在時域/頻域之外用來增加容量和改善性能, SDMA的關鍵技術就是利用多天線對空間參數進行估計,對下行鏈路的信號進行空間合成。另外,將CDMA與SDMA技術結合起來也起到了相互補充的作用,尤其是當幾個移動用戶靠得很近並使得SDMA無法分出時,CDMA就可以很輕松地起到分離作用了,而SDMA本身又可以使相互干擾的CDMA用戶降至最小。SDMA技術的另一重要作用是可以大致估算出每個用戶的距離和方位,可應用於第三代移動通信用戶的定位,並能為越區切換提供參考信息。總的來講,TD-SCDMA有價格便宜、容量較高和性能優良等諸多優點。 2、智能天線技術。智能天線技術是中國標准TD-SDMA中的重要技術之一,是基於自適應天線原理的一種適合於第三代移動通信系統的新技術。它結合了自適應天線技術的優點,利用天線陣列的波束匯成和指向,產生多個獨立的波束,可以自適應地調整其方向圖以跟蹤信號的變化,同時可對干擾方向調零以減少甚至抵消干擾信號,增加系統的容量和頻譜效率。智能天線的特點是能夠以較低的代價換得天線覆蓋范圍、系統容量、業務質量、抗阻塞和抗掉話等性能的提高。智能天線在干擾和雜訊環境下,通過其自身的反饋控制系統改變輻射單元的輻射方向圖、頻率響應及其他參數,使接收機輸出端有最大的信噪比。 3、WAP技術。WAP(Wireless Application Protocol,無線應用協議)已經成為數字行動電話和其他無線終端上無線信息和電話服務的實際世界標准。WAP可提供相關服務和信息,提供其他用戶進行連接時的安全、迅速、靈敏和在線的交互方式。WAP駐留在網際網路上的TCP/IP環境和蜂窩傳輸環境之間,但是獨立於所使用的傳輸機制,可用於通過行動電話或其他無線終端來訪問和顯示多種形式的無線信息。 WAP規范既利用了現有技術標准中適應於無線通信環境的部分,又在此基礎上進行了新的擴展。由於WAP技術位於GSM網路和網際網路之間,一端連接現有的GSM網路,一端連接網際網路。因此,只要用戶具有支持WAP協議的媒體電話,就可以進入互聯網,實現一體化的信息傳送。而廠商使用該協議,則可以開發出無線介面獨立、設備獨立和完全可以交互操作的手持設備Internet接入方案,從而使得廠商的WAP方案能最大限度地利用用戶對Web伺服器、Web開發工具、Web編程和Web應用的既有投資,保護用戶現有利益。同時也解決了無線環境所帶來的有關新問題。目前,全球各大行動電話製造商,包括諾基亞、愛立信、摩托羅拉和阿爾卡特在內,都已保證提供支持WAP的無線設備。 4、快速無線IP技術。快速無線IP(Wireless IP,無線互聯網)技術將是未來移動通信發展的重點,寬頻帶多媒體業務是最終用戶的基本要求。根據ITM-2000的基本要求,第三代移動通信系統可以提供較高的傳輸速度(本地區2Mb/s,移動144Kb/s)。現代的移動設備越來越多了(手機、筆記本電腦、PDA等),剩下的好像就是網路是否可以移動,無線IP技術與第三代移動通信技術結合將會實現這個願望。由於無線IP主機在通信期間需要在網路上移動,其IP地址就有可能經常變化,傳統的有線IP技術將導致通信中斷,但第三代移動通信技術因為利用了蜂窩行動電話呼叫原理,完全可以使移動節點採用並保持固定不變的IP地址,一次登錄即可實現在任意位置上或在移動中保持與IP主機的單一鏈路層連接,完成移動中的數據通信。 5、軟體無線電技術。在不同工作頻率、不同調制方式、不同多址方式等多種標准共存的第三代移動通信系統中,軟體無線電技術是一種最有希望解決這些問題的技術之一。軟體無線電技術可將模擬信號的數字化過程盡可能地接近天線,即將AD轉換器盡量靠近RF射頻前端,利用DSP的強大處理能力和軟體的靈活性實現信道分離、調制解調、信道編碼解碼等工作,從而可為第二代移動通信系統向第三代移動通信系統的平滑過渡提供一個良好的無縫解決方案。 第三代移動通信系統需要很多關鍵性技術,軟體無線電技術基於同一硬體平台,通過載入不同的軟體,就可以獲得不同的業務特性,這對於系統升級、網路平滑過渡、多頻多模的運行情況來講,相對簡單容易、成本低廉,因此對於第三代移動通信系統的多模式、多頻段、多速率、多業務、多環境的特殊要求特別重要。所以在未來移動通信應用中有著廣泛的應用意義,不僅可改變傳統觀念,還將為移動通信的軟體化、智能化、通用化、個人化和兼容性帶來深遠影響。 6、多載波技術。多載波MC-CDMA是第三代移動通信系統中使用的一種新技術。多載波CDMA技術早在1993年的PIMRC會議上就被提出來了。目前,多載波CDMA作為一種有著良好應用前景的技術,已吸引了許多公司對此進行深入研究。多載波CDMA技術的研究內容大致有兩類:一是用給定擴頻碼來擴展原始數據,再用每個碼片來調制不同的載波。另一種是用擴頻碼來擴展已經進行了串並變換後的數據流,再用每個數據流來調制不同的載波。 7、多用戶檢測技術。在CDMA系統中,由於碼間不正交,會引起多址干擾(MAI),而多址干擾將會限制系統容量,為了消除多址干擾影響,人們提出了利用其他用戶的已知信息去消除多址干擾的多用戶檢測技術。多用戶檢測技術分為兩大類:線性多用戶檢測和相減去干擾檢測。在線性多用戶檢測中,對傳統的解相器軟輸出的信號進行一種線性的映射(變換)以期產生新的一組有希望提供更好性能的輸出。在相減去干擾檢測中,可產生對干擾的預測並使之減小。目前,CDMA系統中的多用戶檢測技術還存在一定的局限,主要表現在:多用戶檢測只是消除了小區內的干擾,而對小區間的干擾還是無法消除;演算法相當復雜,不易在實際系統中實現。多用戶檢測技術的局限是暫時的,隨著數字信號處理技術和微電子技術的發展,降低復雜性的多用戶檢測技術必將在第三代移動通信系統中得到廣泛的應用。