① 如何區別資料庫、數據中台、數據湖
數據湖、數據倉庫和數據中台,他們並沒有直接的關系,只是他們為業務產生價值的形式有不同的側重。
一、區別:
數據湖作為一個集中的存儲庫,可以在其中存儲任意規模的所有結構化和非結構化數據。在數據湖中,可以存儲數據不需要對其進行結構化,就可以運行不同類型的分析。
數據倉庫,也稱為企業數據倉庫,是一種數據存儲系統,它將來自不同來源的結構化數據聚合起來,用於業務智能領域的比較和分析,數據倉庫是包含多種數據的存儲庫,並且是高度建模的。
數據中台是一個承接技術,引領業務,構建規范定義的、全域可連接萃取的、智慧的數據處理平台,建設目標是為了高效滿足前台數據分析和應用的需求。數據中台距離業務更近,能更快速的相應業務和應用開發的需求,可追溯,更精準。
二、關系:
數據湖、數據倉庫更多地是面向不同對象的不同形態的數據資產。而數據中台更多強調的是服務於前台,實現邏輯、標簽、演算法、模型的復用沉澱。
數據中台像一個「數據工廠」,涵蓋了數據湖、數據倉庫等存儲組件,隨著數據中台的發展,未來很有可能數據湖和數據倉庫的概念會被弱化。
三、小結:
數據空間持續增長,為了更好地發揮數據價值,未來數據技術趨於融合,同時也在不斷創新。
② 大數據服務平台是什麼有什麼用
現今社會每時每刻都在產生數據,企業內部的經營交易信息、物聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,我們身邊處處都有大數據。而大數據服務平台則是一個集數據接入、數據處理、數據存儲、查詢檢索、分析挖掘等、應用介面等為一體的平台,然後通過在線的方式來提供數據資源、數據能力等來驅動業務發展的服務,國外如Amazon ,Oracle,IBM,Microsoft...國內如華為,商理事等公司都是該服務的踐行者。
③ 大數據常見的應用場景有哪些
大數據時代的出現簡單的講是海量數據同完美計算能力結合的結果,確切的說是移動互聯網、物聯網產生了海量的數據,大數據計算技術完美地解決了海量數據的收集、存儲、計算、分析的問題。
對於大數據的應用場景,包括各行各業對大數據處理和分析的應用,最核心的還是用戶需求。
一、醫療大數據看病更高效
除了較早前就開始利用大數據的互聯網公司,醫療行業是讓大數據分析最先發揚光大的傳統行業之一。
二、生物大數據改良基因
當下,我們所說的生物大數據技術主要是指大數據技術在基因分析上的應用,通過大數據平台人類可以將自身和生物體基因分析的結果進行記錄和存儲,利用建立基於大數據技術的基因資料庫。
三、金融大數據理財利器
大數據在金融行業的應用可以總結為以下五個方面:精準營銷、風險管控、決策支持、效率提升、產品設計等。
四、零售大數據最懂消費者
零售行業大數據應用有兩個層面,一個層面是零售行業可以了解客戶消費喜好和趨勢,進行商品的精準營銷,降低營銷成本。另一層面是依據客戶購買產品,為客戶提供可能購買的其它產品,擴大銷售額,也屬於精準營銷范疇。另外零售行業可以通過大數據掌握未來消費趨勢,有利於熱銷商品的進貨管理和過季商品的處理。
五、電商大數據精準營銷法寶
電商是最早利用大數據進行精準營銷的行業,除了精準營銷,電商可以依據客戶消費習慣來提前為客戶備貨,並利用便利店作為貨物中轉點,在客戶下單15分鍾內將貨物送上門,提高客戶體驗。
六、農牧大數據量化生產
大數據在農業應用主要是指依據未來商業需求的預測來進行農牧產品生產,降低菜賤傷農的概率。同時大數據的分析將會更見精確預測未來的天氣氣候,幫助農牧民做好自然災害的預防工作。大數據同時也會幫助農民依據消費者消費習慣決定來增加哪些品種的種植,減少哪些品種農作物的生產,提高單位種植面積的產值,同時有助於快速銷售農產品,完成資金迴流。
七、交通大數據暢通出行
交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。
盡管現在已經基本實現了數字化,但是數字化和數據化還根本不是一回事,只是局部的提高了採集、存儲和應用的效率,本質上並沒有太大的改變。而大數據時代的到來必然帶來破解難題的重大機遇。
八、教育大數據因材施教
隨著技術的發展,信息技術已在教育領域有了越來越廣泛的應用。考試、課堂、師生互動、校園設備使用、家校關系……只要技術達到的地方,各個環節都被數據包裹。在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。
九、體育大數據奪冠精靈
大數據對於體育的改變可以說是方方面面,從運動員本身來講,可穿戴設備收集的數據可以讓自己更了解身體狀況。媒體評論員,通過大數據提供的數據更好的解說比賽,分析比賽。數據已經通過大數據分析轉化成了洞察力,為體育競技中的勝利增加籌碼,也為身處世界各地的體育愛好者隨時隨地觀賞比賽提供了個性化的體驗。盡管鮮有職業網球選手願意公開承認自己利用大數據來制定比賽策劃和戰術,但幾乎每一個球員都會在比賽前後使用大數據服務。
十、環保大數據對抗PM2.5
氣象對社會的影響涉及到方方面面。傳統上依賴氣象的主要是農業、林業和水運等行業部門,而如今,氣象儼然成為了二十一世紀社會發展的資源,並支持定製化服務滿足各行各業用戶需要。藉助於大數據技術,天氣預報的准確性和實效性將會大大提高,預報的及時性將會大大提升,同時對於重大自然災害,例如龍卷風,通過大數據計算平台,人們將會更加精確地了解其運動軌跡和危害的等級,有利於幫助人們提高應對自然災害的能力。
十一、食品大數據舌尖上的安全
大數據不僅能帶來商業價值,亦能產生社會價值。隨著信息技術的發展,食品監管也面臨著眾多的各種類型的海量數據,如何從中提取有效數據成為關鍵所在。可見,大數據管理是一項巨大挑戰,一方面要及時提取數據以滿足食品安全監管需求;另一方面需在數據的潛在價值與個人隱私之間進行平衡。相信大數據管理在食品監管方面的應用,可以為食品安全撐起一把有力的保護傘。
十二、調控和財政支出大數據令其有條不紊
政府利用大數據技術可以了解各地區的經濟發展情況,各產業發展情況,消費支出和產品銷售情況,依據數據分析結果,科學地制定宏觀政策,平衡各產業發展,避免產能過剩,有效利用自然資源和社會資源,提高社會生產效率。
十三、輿情監控大數據
國家正在將大數據技術用於輿情監控,其收集到的數據除了解民眾訴求,降低群體事件之外,還可以用於犯罪管理。
④ 商業數據分析的內容有哪些
第一作用:用數據說話
商業分析最大作用之一,用數據量化現狀,用清晰消除模糊。比如賣貨這件看似簡單的事,如果沒有數據,就只能籠統的說:感覺賣的還好。如果在交易系統對訂單ID、商品名稱、商品原價、商品實際交易價格、商品交易數量、參與優惠活動、付款用戶ID進行了記錄。就能很准確的知道:到底銷售金額是多少,到底哪些用戶來購買,到底商品賣了多少件。
除了直接記錄,還能基於以上數據做二次加工,衍生出更多的有價值信息。
第三作用:用數據尋因
這是人們通常認知的商業分析的作用1。需要注意的是,商業分析探索問題原因,不是單純依靠內部系統數據。比如銷售發生問題,往往是通過內部數據鎖定是什麼時候,什麼區域,什麼門店,什麼產品發生的問題,之後要換其他分析手段了。商品滯銷,很有可能是因為門店管理混亂、核心銷售流失、消費者不喜歡、競品在打壓,這些因素在內部是沒有數據記錄的。因此單純對著圖標很難得到結論,得通過市場走訪、員工訪談、消費者調研,競品對比,共同確認問題發生的真正原因。類似的,在營銷活動、運營計劃、生產供應等方面,都可以類似分析。
第四作用:用數據評估
這是人們通常認知的商業分析的作用*2。比如評估一個銷售的能力,不能光看銷售金額,還會考慮銷售回款,毛利,顧客服務滿意度,大客戶數量,違規(搶客、不規范報單、拆單)等等等。當評估維度一多,就得做綜合性評估。這時候可以用統計學方法,做專家評估或神經網路模型,壓縮評估變數,得出綜合分數,從而更好的判斷銷售能力。類似的,在產品、門店、供應商資質等方面,都可以類似評估。
第五作用:用數據預測
這是人們通常認知的商業分析的作用*3。比如預測銷售情況,對業務部、市場部、供應鏈、售後都很需要。銷售高峰,意味著供應鏈的供應、售後的服務都會成倍的增加工作量。銷售低谷,市場部就得想辦法做事情拉動銷量,業務部得努力抓執行。預測銷售利用統計學方法或機器學習方法都行,之後可以慢慢分享。需要注意的是,商業預測不同於農業、社會學、經濟學預測,商業環境本來就是瞬息萬變的。導致預測的根基更不牢靠,預測前提經常變化。因此商業預測更多是作為參照值,預測效果不如農業、社會學、經濟學那麼好。