導航:首頁 > 數據處理 > 大數據段子是哪個

大數據段子是哪個

發布時間:2024-02-02 07:35:31

1. 大數據時代已經到來,什麼是大數據

大數據時代已經到來,什麼是大數據

大數據時代已經到來,你了解嗎?什麼是大數據?一、大數據出現的背景進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。它已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的證券公司等寫進了投資推薦報告。數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然現在企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識 到數據對企業的重要性。大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。最早提出大數據時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的 挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日, 卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量,大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。二、什麼是大數據?信息技術領域原先已經有「海量數據」、「大規模數據」等概念,但這些概念只著眼於數據規模本身,未能充分反映數據爆發背景下的數據處理與應用需求,而「大數據」這一新概念不僅指規模龐大的數據對象,也包含對這些數據對象的處理和應用活動,是數據對象、技術與應用三者的統一。1、大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據對象既可能是實際的、有限的數據集合,如某個政府部門或企業掌握的資料庫,也可能是虛擬的、無限的數據集合,如微博、微信、社交網路上的全部信息。大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,「大數據」指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。亞馬遜網路服務(AWS)、 大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。研發小組對大數據的定義:「大數據是最大的 宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。」Kelly說:「大數據是可能不包含所有的 信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。2、大數據技術,是指從各種各樣類型的大數據中,快速獲得有價值信息的技術的能力,包括數據採集、存儲、管理、分析挖掘、可視化等技術及其集成。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。3、大數據應用,是 指對特定的大數據集合,集成應用大數據技術,獲得有價值信息的行為。對於不同領域、不同企業的不同業務,甚至同一領域不同企業的相同業務來說,由於其業務 需求、數據集合和分析挖掘目標存在差異,所運用的大數據技術和大數據信息系統也可能有著相當大的不同。惟有堅持「對象、技術、應用」三位一體同步發展,才 能充分實現大數據的價值。當你的技術達到極限時,也就是數據的極限」。大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。三、大數據的類型和價值挖掘方法1、大數據的類型大致可分為三類:1)傳統企業數據(Traditionalenterprisedata):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。2)機器和感測器數據(Machine-generated/sensor data):包括呼叫記錄(CallDetail Records),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。3)社交數據(Socialdata):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。2、大數據挖掘商業價值的方法主要分為四種:1)客戶群體細分,然後為每個群體量定製特別的服務。2)模擬現實環境,發掘新的需求同時提高投資的回報率。3)加強部門聯系,提高整條管理鏈條和產業鏈條的效率。4)降低服務成本,發現隱藏線索進行產品和服務的創新。四、大數據的特點業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。具體來說,大數據具有4個基本特徵:1、是數據體量巨大數據體量(volumes)大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量; 網路資料表明,其新首頁導航每天需要提供的數據超過1.5PB(1PB=1024TB),這些數據如果列印出來將超過5千億張A4紙。有資料證實,到目前 為止,人類生產的所有印刷材料的數據量僅為200PB。2、是數據類別大和類型多樣數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化 數據范疇,囊括了半結構化和非結構化數據。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。3、是處理速度快在數據量非常龐大的情況下,也能夠做到數據的實時處理。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。4、是價值真實性高和密度低數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。以視頻為例,一小時的視頻,在不間斷的監控過程中,可能有用的數據僅僅只有一兩秒。五、大數據的作用1、對大數據的處理分析正成為新一代信息技術融合應用的結點移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。大數據具有催生社會變革的能量。但釋放這種能量,需要嚴謹的數據治理、富有洞見的數據分析和激發管理創新的環境(Ramayya Krishnan,卡內基·梅隆大學海因茲學院院長)。2、大數據是信息產業持續高速增長的新引擎面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。3、大數據利用將成為提高核心競爭力的關鍵因素各 行各業的決策正在從「業務驅動」 轉變「數據驅動」。對大數據的分析可以使零售商實時掌握市場動態並迅速做出應對;可以為商家制定更加精準有效的營銷策略提供決策支持;可以幫助企業為消費 者提供更加及時和個性化的服務;在醫療領域,可提高診斷准確性和葯物有效性;在公共事業領域,大數據也開始發揮促進經濟發展、維護社會穩定等方面的重要作 用。4、大數據時代科學研究的方法手段將發生重大改變例如,抽樣調查是社會科學的基本研究方法。在大數據時代,可通過實時監測、跟蹤研究對象在互聯網上產生的海量行為數據,進行挖掘分析,揭示出規律性的東西,提出研究結論和對策。六、大數據的商業價值1、對顧客群體細分「大數據」可以對顧客群體細分,然後對每個群體量體裁衣般的採取獨特的行動。瞄準特定的顧客群體來進行營銷和服務是商家一直以來的追求。雲存儲的海量數據和「大數據」的分析技術使得對消費者的實時和極端的細分有了成本效率極高的可能。2、模擬實境運用「大數據」模擬實境,發掘新的需求和提高投入的回報率。現在越來越多的產品中都裝有感測器,汽車和智能手機的普及使得可收集數據呈現爆炸性增長。Blog、Twitter、Facebook和微博等社交網路也在產生著海量的數據。雲計算和「大數據」分析技術使得商家可以在成本效率較高的情況下,實時地把這些數據連同交易行為的數據進行儲存和分析。交易過程、產品使用和人類行為都可以 數據化。「大數據」技術可以把這些數據整合起來進行數據挖掘,從而在某些情況下通過模型模擬來判斷不同變數(比如不同地區不同促銷方案)的情況下何種方案 投入回報最高。3、提高投入回報率提高「大數據」成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。「大數據」能力強的部門可以通過雲計算、互聯網和內部搜索引擎把」大數據」成果和「大數據」能力比較薄弱的部門分享,幫助他們利用「大數據」創造商業價值。4、數據存儲空間出租企業和個人有著海量信息存儲的需求,只有將數據妥善存儲,才有可能進一步挖掘其潛在價值。具體而言,這塊業務模式又可以細分為針對個人文件存儲和針對企業用 戶兩大類。主要是通過易於使用的API,用戶可以方便地將各種數據對象放在雲端,然後再像使用水、電一樣按用量收費。目前已有多個公司推出相應服務,如亞 馬遜、網易、諾基亞等。運營商也推出了相應的服務,如中國移動的彩雲業務。5、管理客戶關系客戶管理應用的目的是根據客戶的屬性(包括自然屬性和行為屬性),從不同角度深層次分析客戶、了解客戶,以此增加新的客戶、提高客戶的忠誠度、降低客戶流失 率、提高客戶消費等。對中小客戶來說,專門的CRM顯然大而貴。不少中小商家將飛信作為初級CRM來使用。比如把老客戶加到飛信群里,在群朋友圈裡發布新 產品預告、特價銷售通知,完成售前售後服務等。6、個性化精準推薦在運營商內部,根據用戶喜好推薦各類業務或應用是常見的,比如應用商店軟體推薦、IPTV視頻節目推薦等,而通過關聯演算法、文本摘要抽取、情感分析等智能分 析演算法後,可以將之延伸到商用化服務,利用數據挖掘技術幫助客戶進行精準營銷,今後盈利可以來自於客戶增值部分的分成。以日常的「垃圾簡訊」為例,信息並不都是「垃圾」,因為收到的人並不需要而被視為垃圾。通過用戶行為數據進行分析後,可以給需要的人發送需要的信息,這樣「垃圾簡訊」就成了有價值的信息。在日本的麥當勞,用戶在手機上下載優惠券,再去餐廳用運營商DoCoMo的手機錢包優惠支付。運營商和麥當勞搜集相關消費信息,例如經常買什麼漢堡,去哪個店消費,消費頻次多少,然後精準推送優惠券給用戶。7、數據搜索數據搜索是一個並不新鮮的應用,隨著「大數據」時代的到來,實時性、全范圍搜索的需求也就變得越來越強烈。我們需要能搜索各種社交網路、用戶行為等數據。其商業應用價值是將實時的數據處理與分析和廣告聯系起來,即實時廣告業務和應用內移動廣告的社交服務。運營商掌握的用戶網上行為信息,使得所獲取的數據「具備更全面維度」,更具商業價值。典型應用如中國移動的「盤古搜索」。七、大數據對經濟社會的重要影響1、能夠推動實現巨大經濟效益比如對中國零售業凈利潤增長的貢獻,降低製造業產品開發、組裝成本等。預計2013年全球大數據直接和間接拉動信息技術支出將達1200億美元。2、能夠推動增強社會管理水平大數據在公共服務領域的應用,可有效推動相關工作開展,提高相關部門的決策水平、服務效率和社會管理水平,產生巨大社會價值。歐洲多個城市通過分析實時採集的交通流量數據,指導駕車出行者選擇最佳路徑,從而改善城市交通狀況。3、如果沒有高性能的分析工具,大數據的價值就得不到釋放對大數據應用必須保持清醒認識,既不能迷信其分析結果,也不能因為其不完全准確而否定其重要作用。1) 由於各種原因,所分析處理的數據對象中不可避免地會包括各種錯誤數據、無用數據,加之作為大數據技術核心的數據分析、人工智慧等技術尚未完全成熟,所以對 計算機完成的大數據分析處理的結果,無法要求其完全准確。例如,谷歌通過分析億萬用戶搜索內容能夠比專業機構更快地預測流感暴發,但由於微博上無用信息的 干擾,這種預測也曾多次出現不準確的情況。2)必須清楚定位的是,大數據作用與價值的重點在於能夠引導和啟發大數據應用者的創新思維,輔助決策。簡單而言,若是處理一個問題,通常人能夠想到一種方法,而大數據能夠提供十種參考方法,哪怕其中只有三種可行,也將解決問題的思路拓展了三倍。所以,客觀認識和發揮大數據的作用,不誇大、不縮小,是准確認知和應用大數據的前提。八、總結不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。1、從大數據的價值鏈條來分析,存在三種模式:1)手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。2)沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。3)既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。2、未來在大數據領域最具有價值的是兩種事物:1)擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;2)還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。大 數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不 斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於 數據的應用需求和應用水平進入新的階段。

2. 大數據是什麼意思舉例說明

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。例如:洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生;google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布;統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。

大數據理論:

1、理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

2、技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

3、實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

3. 大數據指的是什麼

大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

(3)大數據段子是哪個擴展閱讀

大數據的價值體現在以下幾個方面:

1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷

2、做小而美模式的中小微企業可以利用大數據做服務轉型

3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值

參考資料來源:網路-大數據

4. 什麼是大數據,看完這篇就明白了

什麼是大數據

如果從字面上解釋的話,大家很容易想到的可能就是大量的數據,海量的數據。這樣的解釋確實通俗易懂,但如果用專業知識來描述的話,就是指數據集的大小遠遠超過了現有普通資料庫軟體和工具的處理能力的數據。

大數據的特點

海量化

這里指的數據量是從TB到PB級別。在這里順帶給大家科普一下這是什麼概念。

MB,全稱MByte,計算機中的一種儲存單位,含義是「兆位元組」。

1MB可儲存1024×1024=1048576位元組(Byte)。

位元組(Byte)是存儲容量基本單位,1位元組(1Byte)由8個二進制位組成。

位(bit)是計算機存儲信息的最小單位,二進制的一個「0」或一個「1」叫一位。

通俗來講,1MB約等於一張網路通用圖片(非高清)的大小。

1GB=1024MB,約等於下載一部電影(非高清)的大小。

1TB=1024GB,約等於一個固態硬碟的容量大小,能存放一個不間斷的監控攝像頭錄像(200MB/個)長達半年左右。

1PB=1024TB,容量相當大,應用於大數據存儲設備,如伺服器等。

1EB=1024PB,目前還沒有單個存儲器達到這個容量。

多樣化

大數據含有的數據類型復雜,超過80%的數據是非結構化的。而數據類型又分成結構化數據,非結構化數據,半結構化數據。這里再對三種數據類型做一個分類科普。

①結構化數據

結構化的數據是指可以使用關系型資料庫(例如:MySQL,Oracle,DB2)表示和存儲,表現為二維形式的數據。一般特點是:數據以行為單位,一行數據表示一個實體的信息,每一行數據的屬性是相同的。所以,結構化的數據的存儲和排列是很有規律的,這對查詢和修改等操作很有幫助。

但是,它的擴展性不好。比如,如果欄位不固定,利用關系型資料庫也是比較困難的,有人會說,需要的時候加個欄位就可以了,這樣的方法也不是不可以,但在實際運用中每次都進行反復的表結構變更是非常痛苦的,這也容易導致後台介面從資料庫取數據出錯。你也可以預先設定大量的預備欄位,但這樣的話,時間一長很容易弄不清除欄位和數據的對應狀態,即哪個欄位保存有哪些數據。

②半結構化數據

半結構化數據是結構化數據的一種形式,它並不符合關系型資料庫或其他數據表的形式關聯起來的數據模型結構,但包含相關標記,用來分隔語義元素以及對記錄和欄位進行分層。因此,它也被稱為自描述的結構。半結構化數據,屬於同一類實體可以有不同的屬性,即使他們被組合在一起,這些屬性的順序並不重要。常見的半結構數據有XML和JSON。

③非結構化數據

非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片、各類報表、圖像和音頻/視頻信息等等。非結構化數據其格式非常多樣,標准也是多樣性的,而且在技術上非結構化信息比結構化信息更難標准化和理解。所以存儲、檢索、發布以及利用需要更加智能化的IT技術,比如海量存儲、智能檢索、知識挖掘、內容保護、信息的增值開發利用等。

快速化

隨著物聯網、電子商務、社會化網路的快速發展,全球大數據儲量迅猛增長,成為大數據產業發展的基礎。根據國際數據公司(IDC)的監測數據顯示,2013年全球大數據儲量為4.3ZB(相當於47.24億個1TB容量的移動硬碟),2014年和2015年全球大數據儲量分別為6.6ZB和8.6ZB。近幾年全球大數據儲量的增速每年都保持在40%,2016年甚至達到了87.21%的增長率。2016年和2017年全球大數據儲量分別為16.1ZB和21.6ZB,2018年全球大數據儲量達到33.0ZB。預測未來幾年,全球大數據儲量規模也都會保持40%左右的增長率。在數據儲量不斷增長和應用驅動創新的推動下,大數據產業將會不斷豐富商業模式,構建出多層多樣的市場格局,具有廣闊的發展空間。

核心價值

大數據的核心價值,從業務角度出發,主要有如下的3點:

a.數據輔助決策:為企業提供基礎的數據統計報表分析服務。分析師能夠輕易獲取數據產出分析報告指導產品和運營,產品經理能夠通過統計數據完善產品功能和改善用戶體驗,運營人員可以通過數據發現運營問題並確定運營的策略和方向,管理層可以通過數據掌握公司業務運營狀況,從而進行一些戰略決策;

b.數據驅動業務:通過數據產品、數據挖掘模型實現企業產品和運營的智能化,從而極大的提高企業的整體效能產出。最常見的應用領域有基於個性化推薦技術的精準營銷服務、廣告服務、基於模型演算法的風控反欺詐服務徵信服務,等等。

c.數據對外變現:通過對數據進行精心的包裝,對外提供數據服務,從而獲得現金收入。市面上比較常見有各大數據公司利用自己掌握的大數據,提供風控查詢、驗證、反欺詐服務,提供導客、導流、精準營銷服務,提供數據開放平台服務,等等。

大數據能做什麼?

1、海量數據快速查詢(離線)

能夠在海量數據的基礎上進行快速計算,這里的「快速」是與傳統計算方案對比。海量數據背景下,使用傳統方案計算可能需要一星期時間。使用大數據 技術計算只需要30分鍾。

2.海量數據實時計算(實時)

在海量數據的背景下,對於實時生成的最新數據,需要立刻、馬上傳遞到大數據環境,並立刻、馬上進行相關業務指標的分析,並把分析完的結果立刻、馬上展示給用戶或者領導。

3.海量數據的存儲(數據量大,單個大文件)

大數據能夠存儲海量數據,大數據時代數據量巨大,1TB=1024*1G 約26萬首歌(一首歌4M),1PB=1024 * 1024 * 1G約2.68億首歌(一首歌4M)

大數據能夠存儲單個大文件。目前市面上最大的單個硬碟大小約為10T左右。若有一個文件20T,將 無法存儲。大數據可以存儲單個20T文件,甚至更大。

4.數據挖掘(挖掘以前沒有發現的有價值的數據)

挖掘前所未有的新的價值點。原始企業內數據無法計算出的結果,使用大數據能夠計算出。

挖掘(演算法)有價值的數據。在海量數據背景下,使用數據挖掘演算法,挖掘有價值的指標(不使用這些演算法無法算出)

大數據行業的應用?

1.常見領域

2.智慧城市

3.電信大數據

4.電商大數據

大數據行業前景(國家政策)?

2014年7月23日,國務院常務會議審議通過《企業信息公示暫行條例(草案)》

2015年6月19日,國家主席、總理同時就「大數據」發表意見:《國務院辦公廳關於運用大數據加強對市場主體服務和監管的若干意見》

2015年8月31日,國務院印發《促進大數據發展行動綱要》。國發〔2015〕50號

2016年12月18日,工業和信息化部關於印發《大數據產業發展規劃》

2018年1月23日。中央全面深化改革領導小組會議審議通過了《科學數據管理辦法》

2018年7月1日,國務院辦公廳印發《關於運用大數據加強對市場主體服務和監管的若干意見》

2019年政府工作報告中總理指出「深化大數據、人工智慧等研發應用,培育新一代信息技術、高端裝備、生物醫葯、新能源汽車、新材料等新興產業集群,壯大數字經濟。」

總結

我國著名的電商之父,阿里巴巴創始人馬雲先生曾說過,未來10年,乃至20年,將是人工智慧的時代,大數據的時代。對於現在正在學習大數據的我們來說,未來對於我們更是充滿了各種機遇與挑戰。

python學習網,大量的免費python視頻教程,歡迎在線學習!

閱讀全文

與大數據段子是哪個相關的資料

熱點內容
抖音數據後台在哪裡 瀏覽:475
信用卡消費不批准交易怎麼辦 瀏覽:244
批發市場的魚怎麼做 瀏覽:368
皇冠技術為什麼那麼貴 瀏覽:322
如何看待新技術賦能傳統金融 瀏覽:615
股東換法人不願意交易怎麼辦 瀏覽:121
成人高考招生代理怎麼樣 瀏覽:25
小程序如何賺外快 瀏覽:740
有什麼紙業廠招代理 瀏覽:68
蘋果11手機如何後退程序 瀏覽:61
對大數據有什麼期待 瀏覽:800
滿城哪個農貿市場好 瀏覽:103
葡萄酒紅酒代理如何起步 瀏覽:966
牛副產品怎麼開檢疫證 瀏覽:380
一個產品不好的熟食店如何逆轉 瀏覽:666
趕出市場的公司有哪些 瀏覽:764
如何將文檔轉換成執行程序 瀏覽:254
期權一般多久能交易 瀏覽:775
張店大型菜市場有哪些 瀏覽:511
如何找到拐點的數據 瀏覽:268