導航:首頁 > 數據處理 > 大數據培訓哪些課程

大數據培訓哪些課程

發布時間:2022-04-12 14:46:36

1. 大數據要學哪些課程

大數據存儲階段:百hbase、hive、sqoop。
大數度據架構設計階段:Flume分布式、Zookeeper、Kafka。
大數據實時計算階段:Mahout、Spark、storm。
大數據數據採集階段:Python、Scala。
大數據商業實戰階內段:實操企業大數據處理業務場景,分析需求、解決方案實施,技術實戰應用。

2. 大數據學習需要哪些課程

1、Java編程技術

Java編程技術是大數據學習的基礎,Java是一種強類型語言,擁有極高的跨平台能力,可以編寫桌面應用程序、Web應用程序、分布式系統和嵌入式系統應用程序等,是大數據工程師最喜歡的編程工具,因此,想學好大數據,掌握Java基礎是必不可少的!

2、Linux命令

對於大數據開發通常是在Linux環境下進行的,相比Linux操作系統,Windows操作系統是封閉的操作系統,開源的大數據軟體很受限制,因此,想從事大數據開發相關工作,還需掌握Linux基礎操作命令。

3、Hadoop

Hadoop是大數據開發的重要框架,其核心是HDFS和MapRece,HDFS為海量的數據提供了存儲,MapRece為海量的數據提供了計算,因此,需要重點掌握,除此之外,還需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高級管理等相關技術與操作!

4、Hive

Hive是基於Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張資料庫表,並提供簡單的sql查詢功能,可以將sql語句轉換為MapRece任務進行運行,十分適合數據倉庫的統計分析。對於Hive需掌握其安裝、應用及高級操作等。

5、Avro與Protobuf

Hive是基於Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張資料庫表,並提供簡單的sql查詢功能,可以將sql語句轉換為MapRece任務進行運行,十分適合數據倉庫的統計分析。對於Hive需掌握其安裝、應用及高級操作等。



6、ZooKeeper

ZooKeeper是Hadoop和Hbase的重要組件,是一個為分布式應用提供一致性服務的軟體,提供的功能包括:配置維護、域名服務、分布式同步、組件服務等,在大數據開發中要掌握ZooKeeper的常用命令及功能的實現方法。

7、HBase

HBase是一個分布式的、面向列的開源資料庫,它不同於一般的關系資料庫,更適合於非結構化數據存儲的資料庫,是一個高可靠性、高性能、面向列、可伸縮的分布式存儲系統,大數據開發需掌握HBase基礎知識、應用、架構以及高級用法等。

8、phoenix

phoenix是用Java編寫的基於JDBC API操作HBase的開源SQL引擎,其具有動態列、散列載入、查詢伺服器、追蹤、事務、用戶自定義函數、二級索引、命名空間映射、數據收集、行時間戳列、分頁查詢、跳躍查詢、視圖以及多租戶的特性,大數據開發需掌握其原理和使用方法。

9、Redis

phoenix是用Java編寫的基於JDBC API操作HBase的開源SQL引擎,其具有動態列、散列載入、查詢伺服器、追蹤、事務、用戶自定義函數、二級索引、命名空間映射、數據收集、行時間戳列、分頁查詢、跳躍查詢、視圖以及多租戶的特性,大數據開發需掌握其原理和使用方法。

3. 大數據培訓一般都將些什麼內容

參加大數據培訓都學習些什麼,隨著互聯網在近幾年的飛速發展,大數據頁被越來越多的人所熟知,不管是行內的人還是行外的人都紛紛加入這個行業!於是許多的培訓機構也紛紛崛起,開設相關的培訓課程!作為一個未來的十分有前景的行業。成為大數據工程師無疑是迎接一個很有前景的職業生涯,那麼大數據工程師,要學習什麼內容呢。
大數據培訓的內容:
不同的培訓機構來說,根據注重的點不同大數據課程內容也有所差異,培訓周期也都不大相同。課程內容除開第一階段學習Java語言基礎之外,還要學習HTML、CSS、Java、JavaWeb和資料庫、Linux基礎、Hadoop生態體系、Spark生態體系等課程內容。
二、基礎內容學習
對於初學大數據的同學來說尤其是零基礎的,感覺大數據比較復雜比較難,很難記住。但是對於大數據學習者而言,對於學員的邏輯思維能力要求較高。
三、項目實戰訓練
參加大數據培訓學習還有一項內容是必須要注意的,那就是課程內容安排上必須要有大數據開發相關的項目,項目練習是學習的核心,在這個過程中可以讓我們更加了解項目製作流程,積累一定的經驗,在後邊的工作面授中也能應答自如。

4. 大數據培訓課程都學什麼

對於大數據想必了解過的人和想要學習大數據的童鞋都是有所了解的,知道大數據培訓相關的一些學習內容都有個大概的了解,但是對於大數據培訓學習內容的一些比較詳細的內容還是有所差距的,我們學習大數據的主要目的就是未來以後可以到大企業去做相關的工作,拿到客觀的薪資。那麼這就需要我們了解企業對於大數據技術的需求是什麼,大數據培訓機構大數據課程內容是否包含這些內容。接下來帶大家簡單了解一下。

第一階段Java語言基礎,此階段是大數據剛入門階段,主要是學習一些Java語言的概念、字元、流程式控制制等。

第二階段Javaee核心了解並熟悉一些HTML、CSS的基礎知識,JavaWeb和資料庫,Linux基礎,Linux操作系統基礎原理、虛擬機使用與Linux搭建、Shell 腳本編程、Linux 許可權管理等基本的 Linux 使用知識,通過實際操作學會使用。

第五階段 Hadoop 生態體系,Hadoop 是大數據的重中之重,無論是整體的生態系統、還是各種原理、使用、部署,都是大數據工程師工作中的核心,這一部分必須詳細解讀同時輔以實戰學習。

第六階段Spark生態體系,這也是是大數據非常核心的一部分內容,在這一時期需要了解Scala語言的使用、各種數據結構、同時還要深度講解spark的一系列核心概念比如結構、安裝、運行、理論概念等。

2021大數據學習路線圖:

5. 大數據培訓課程有哪些

大數據的培訓課程有很多的!
大數據是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據有五大特點,即大量(Volume)、高速(Velocity)、多樣(Variety)、低價值密度(Value)、真實性(Veracity)。它並沒有統計學的抽樣方法,只是觀察和追蹤發生的事情。 大數據的用法傾向於預測分析、用戶行為分析或某些其他高級數據分析方法的使用。
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。[6]大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
所以,綜上所述,大數據的培訓課程主要是針對以上內容進行培訓的!

6. 大數據專業主要學什麼

大數據專業是近年來新興起的一個學科,也是目前就業前景非常好的專業。那麼大數據專業主要課程都有什麼呢?下面小編為大家詳細盤點一下相關信息,供大家參考。

1大數據專業學習課程都有哪些

大數據技術專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。

此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等,知識結構是二專多能復合的跨界人才(有專業知識、有數據思維)。

以中國人民大學為例:

基礎課程:數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐。

必修課:離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析。

選修課:數據科學演算法導論、數據科學專題、數據科學實踐、互聯網實用開發技術、抽樣技術、統計學習、回歸分析、隨機過程。

2大數據專業就業方向

1.數據工程方向

畢業生能夠從事基於計算機、移動互聯網、電子信息、電子商務技術、電子金融、電子政務、軍事等領域的Java大數據分布式程序開發、大數據集成平台的應用、開發等方面的高級技術人才,可在政府機關、房地產、銀行、金融、移動互聯網等領域從事各類Java大數據分布式開發、基於大數據平台的程序開發、數據可視化等相關工作,也可在IT領域從事計算機應用工作。

2.數據分析方向

畢業生能夠從事基於計算機、移動互聯網、電子信息、電子商務技術、電子金融、電子政務、軍事等領域的大數據平台運維、流計算核心技術等方面的高級技術人才,可在政府機關、房地產、銀行、金融、移動互聯網等領域從事各類大數據平台運維、大數據分析、大數據挖掘等相關工作,也可在IT領域從事計算機應用工作。

7. 大數據培訓課程介紹,大數據學習課程要學習哪些

以下介紹的課程主要針對零基礎大數據工程師每個階段進行通俗易懂簡易介紹,方面大家更好的了解大數據學習課程。課程框架是科多大數據的零基礎大數據工程師課程。
一、 第一階段:靜態網頁基礎(HTML+CSS)
1. 難易程度:一顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:html常用標簽、CSS常見布局、樣式、定位等、靜態頁面的設計製作方式等
4. 描述如下:
從技術層面來說,該階段使用的技術代碼很簡單、易於學習、方便理解。從後期課程層來說,因為我們重點是大數據,但前期需要鍛煉編程技術與思維。經過我們多年開發和授課的項目經理分析,滿足這兩點,目前市場上最好理解和掌握的技術是J2EE,但J2EE又離不開頁面技術。所以第一階段我們的重點是頁面技術。採用市場上主流的HTMl+CSS。
二、 第二階段:JavaSE+JavaWeb
1. 難易程度:兩顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:java基礎語法、java面向對象(類、對象、封裝、繼承、多態、抽象類、介面、常見類、內部類、常見修飾符等)、異常、集合、文件、IO、MYSQL(基本SQL語句操作、多表查詢、子查詢、存儲過程、事務、分布式事務)JDBC、線程、反射、Socket編程、枚舉、泛型、設計模式
4. 描述如下:
稱為Java基礎,由淺入深的技術點、真實商業項目模塊分析、多種存儲方式的設計
與實現。該階段是前四個階段最最重要的階段,因為後面所有階段的都要基於此階段,也是學習大數據緊密度最高的階段。本階段將第一次接觸團隊開發、產出具有前後台(第一階段技術+第二階段的技術綜合應用)的真實項目。
三、 第三階段:前端框架
1. 難易程序:兩星
2. 課時量(技術知識點+階段項目任務+綜合能力):64課時
3. 主要技術包括:Java、Jquery、註解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui
4. 描述如下:
前兩個階段的基礎上化靜為動,可以實現讓我們網頁內容更加的豐富,當然如果從市場人員層面來說,有專業的前端設計人員,我們設計本階段的目標在於前端的技術可以更直觀的鍛煉人的思維和設計能力。同時我們也將第二階段的高級特性融入到本階段。使學習者更上一層樓。
四、 第四階段:企業級開發框架
1. 難易程序:三顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬蟲技術nutch,lucene,webServiceCXF、Tomcat集群和熱備、MySQL讀寫分離
4. 描述如下:
如果將整個JAVA課程比作一個糕點店,那前面三個階段可以做出一個武大郎燒餅(因為是純手工-太麻煩),而學習框架是可以開一個星巴克(高科技設備-省時省力)。從J2EE開發工程師的任職要求來說,該階段所用到的技術是必須掌握,而我們所授的課程是高於市場(市場上主流三大框架,我們進行七大框架技術傳授)、而且有真實的商業項目驅動。需求文檔、概要設計、詳細設計、源碼測試、部署、安裝手冊等都會進行講解。
五、 第五階段: 初識大數據
1. 難易程度:三顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:大數據前篇(什麼是大數據,應用場景,如何學習大資料庫,虛擬機概念和安裝等)、Linux常見命令(文件管理、系統管理、磁碟管理)、Linux Shell編程(SHELL變數、循環控制、應用)、Hadoop入門(Hadoop組成、單機版環境、目錄結構、HDFS界面、MR界面、簡單的SHELL、java訪問hadoop)、HDFS(簡介、SHELL、IDEA開發工具使用、全分布式集群搭建)、MapRece應用(中間計算過程、Java操作MapRece、程序運行、日誌監控)、Hadoop高級應用(YARN框架介紹、配置項與優化、CDH簡介、環境搭建)、擴展(MAP 端優化,COMBINER 使用方法見,TOP K,SQOOP導出,其它虛擬機VM的快照,許可權管理命令,AWK 與 SED命令)
4. 描述如下:
該階段設計是為了讓新人能夠對大數據有一個相對的大概念怎麼相對呢?在前置課程JAVA的學習過後能夠理解程序在單機的電腦上是如何運行的。現在,大數據呢?大數據是將程序運行在大規模機器的集群中處理。大數據當然是要處理數據,所以同樣,數據的存儲從單機存儲變為多機器大規模的集群存儲。
(你問我什麼是集群?好,我有一大鍋飯,我一個人可以吃完,但是要很久,現在我叫大家一起吃。一個人的時候叫人,人多了呢? 是不是叫人群啊!)
那麼大數據可以初略的分為: 大數據存儲和大數據處理所以在這個階段中呢,我們課程設計了大數據的標准:HADOOP大數據的運行呢並不是在咋們經常使用的WINDOWS 7或者W10上面,而是現在使用最廣泛的系統:LINUX。
六、 第六階段:大數據資料庫
1. 難易程度:四顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:Hive入門(Hive簡介、Hive使用場景、環境搭建、架構說明、工作機制)、Hive Shell編程(建表、查詢語句、分區與分桶、索引管理和視圖)、Hive高級應用(DISTINCT實現、groupby、join、sql轉化原理、java編程、配置和優化)、hbase入門、Hbase SHELL編程(DDL、DML、Java操作建表、查詢、壓縮、過濾器)、細說Hbase模塊(REGION、HREGION SERVER、HMASTER、ZOOKEEPER簡介、ZOOKEEPER配置、Hbase與Zookeeper集成)、HBASE高級特性(讀寫流程、數據模型、模式設計讀寫熱點、優化與配置)
4. 描述如下:
該階段設計是為了讓大家在理解大數據如何處理大規模的數據的同時。簡化咋們的編寫程序時間,同時提高讀取速度。
怎麼簡化呢?在第一階段中,如果需要進行復雜的業務關聯與數據挖掘,自行編寫MR程序是非常繁雜的。所以在這一階段中我們引入了HIVE,大數據中的數據倉庫。這里有一個關鍵字,數據倉庫。我知道你要問我,所以我先說,數據倉庫呢用來做數據挖掘分析的,通常是一個超大的數據中心,存儲這些數據的呢,一般為ORACLE,DB2,等大型資料庫,這些資料庫通常用作實時的在線業務。
總之,要基於數據倉庫分析數據呢速度是相對較慢的。但是方便在於只要熟悉SQL,學習起來相對簡單,而HIVE呢就是這樣一種工具,基於大數據的SQL查詢工具,這一階段呢還包括HBASE,它為大數據裡面的資料庫。納悶了,不是學了一種叫做HIVE的數據「倉庫」了么?HIVE是基於MR的所以查詢起來相當慢,HBASE呢基於大數據可以做到實時的數據查詢。一個主分析,另一個主查詢
七、 第七階段:實時數據採集
1. 難易程序:四顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:Flume日誌採集,KAFKA入門(消息隊列、應用場景、集群搭建)、KAFKA詳解(分區、主題、接受者、發送者、與ZOOKEEPER集成、Shell開發、Shell調試)、KAFKA高級使用(java開發、主要配置、優化項目)、數據可視化(圖形與圖表介紹、CHARTS工具分類、柱狀圖與餅圖、3D圖與地圖)、STORM入門(設計思想、應用場景、處理過程、集群安裝)、STROM開發(STROM MVN開發、編寫STORM本地程序)、STORM進階(java開發、主要配置、優化項目)、KAFKA非同步發送與批量發送時效,KAFKA全局消息有序,STORM多並發優化
4. 描述如下:
前面的階段數據來源是基於已經存在的大規模數據集來做的,數據處理與分析過後的結果是存在一定延時的,通常處理的數據為前一天的數據。
舉例場景:網站防盜鏈,客戶賬戶異常,實時徵信,遇到這些場景基於前一天的數據分析出來過後呢?是否太晚了。所以在本階段中我們引入了實時的數據採集與分析。主要包括了:FLUME實時數據採集,採集的來源支持非常廣泛,KAFKA數據數據接收與發送,STORM實時數據處理,數據處理秒級別
八、 第八階段:SPARK數據分析
1. 難易程序:五顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:SCALA入門(數據類型、運算符、控制語句、基礎函數)、SCALA進階(數據結構、類、對象、特質、模式匹配、正則表達式)、SCALA高級使用(高階函數、科里函數、偏函數、尾迭代、自帶高階函數等)、SPARK入門(環境搭建、基礎結構、運行模式)、Spark數據集與編程模型、SPARK SQL、SPARK 進階(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA與SOCKET、編程模型)、SPARK高級編程(Spark-GraphX、Spark-Mllib機器學習)、SPARK高級應用(系統架構、主要配置和性能優化、故障與階段恢復)、SPARK ML KMEANS演算法,SCALA 隱式轉化高級特性
4. 描述如下:
同樣先說前面的階段,主要是第一階段。HADOOP呢在分析速度上基於MR的大規模數據集相對來說還是挺慢的,包括機器學習,人工智慧等。而且不適合做迭代計算。SPARK呢在分析上是作為MR的替代產品,怎麼替代呢? 先說他們的運行機制,HADOOP基於磁碟存儲分析,而SPARK基於內存分析。我這么說你可能不懂,再形象一點,就像你要坐火車從北京到上海,MR就是綠皮火車,而SPARK是高鐵或者磁懸浮。而SPARK呢是基於SCALA語言開發的,當然對SCALA支持最好,所以課程中先學習SCALA開發語言。
在科多大數據課程的設計方面,市面上的職位要求技術,基本全覆蓋。而且並不是單純的為了覆蓋職位要求,而是本身課程從前到後就是一個完整的大數據項目流程,一環扣一環。
比如從歷史數據的存儲,分析(HADOOP,HIVE,HBASE),到實時的數據存儲(FLUME,KAFKA),分析(STORM,SPARK),這些在真實的項目中都是相互依賴存在的。

8. 大數據培訓內容,大數據要學哪些課程

java

數據結構、關系型資料庫、linux系統操作

hadoop離線分析、Storm實時計算、spark內存計算

9. 大數據專業主要課程有哪些

大數據專業主要課程多種多樣,屬於交叉學科。

基礎課程:數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐。

必修課:離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析。

選修課:數據科學演算法導論、數據科學專題、數據科學實踐、互聯網實用開發技術、抽樣技術、統計學習、回歸分析、隨機過程。

就業前景:

作為人口大國和製造大國,我國數據產生能力巨大,大數據資源極為豐富。隨著數字中國建設的推進,各行業的數據資源採集、應用能力不斷提升,將會導致更快更多的數據積累。

預計到2021年底,我國數據總量預計將佔全球數據總量的21%,將成為名列前茅的數據資源大國和全球數據中心。

10. 大數據學習課程有哪些

首先我們要了解Java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。

Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據。基礎

Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。

好·說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。

Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。

記住學到這里可以作為你學大數據的一個節點。

Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。

Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。

Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。

Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。

Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。

Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。

Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。

Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。

閱讀全文

與大數據培訓哪些課程相關的資料

熱點內容
農商銀行怎麼核實房產信息 瀏覽:975
中國科學技術大學有哪些文科專業 瀏覽:976
王牌戰爭貿易區怎麼交易 瀏覽:640
助學貸款保存信息多久 瀏覽:496
怎麼判斷一個程序員的能力 瀏覽:936
股票如何獲取交易日時間 瀏覽:383
呂家傳代理人有哪些 瀏覽:415
百果園小程序怎麼使用 瀏覽:704
哪些葯退出市場 瀏覽:888
如何讓郵箱信息不要在微信顯示 瀏覽:88
產品自用了怎麼做賬 瀏覽:267
程序員如何學習網路技術 瀏覽:872
高頻交易對期貨有什麼好處 瀏覽:272
信息500指數包含哪些股票 瀏覽:385
如何代理鞋品牌 瀏覽:551
資料庫s是什麼 瀏覽:818
大江技術學院學費多少2020 瀏覽:148
女程序員可轉什麼行業 瀏覽:570
納麗芬祛斑產品怎麼樣 瀏覽:374
元組在資料庫中什麼意思 瀏覽:737