❶ 國內做大數據解決方案的公司有哪些
隨著「大數據時代」的來臨,企業越來越重視數據的作用,數據給企業帶來的價值也越來越多。本文檔將介紹大數據給企業帶來的機遇與挑戰以及企業的大數據解決方案。
第一步先搞清楚什麼是大數據?他不是簡單的大量數據或海量數據,而是有著4V特徵的數據金礦。他給我們的企業會帶來機遇與挑戰。
第二步我們根據大數據的特徵,分析企業大數據平台要迎接大數據的挑戰,應該具備什麼樣的能力。
第三部分,基於大數據平台要求,我們提出一個企業大數據的技術解決方案,介紹解決方案是如何解決大數據難題。
最後我看一看大數據應用當前存在的問題,未來將會怎樣發展。
什麼是大數據?
結束語
隨著高性能計算機、海量數據的存儲和管理的流程的不斷優化,技術能夠解決的問題終將不會成為問題。真正會制約或者成為大數據發展和應用瓶頸的有三個環節:
第一、數據收集和提取的合法性,數據隱私的保護和數據隱私應用之間的權衡。
任何企業或機構從人群中提取私人數據,用戶都有知情權,將用戶的隱私數據用於商業行為時,都需要得到用戶的認可。然而,目前,中國乃至全世界對於用戶隱私應當如何保護、商業規則應當如何制定、觸犯用戶的隱私權應當如何懲治、法律規范應當如何制定等等一系列管理問題都**滯後於大數據的發展速度。未來很多大數據業務在最初發展階段將會遊走在灰色地帶,當商業運作初具規模並開始對大批消費者和公司都產生影響之後,相關的法律法規以及市場規范才會被迫加速制定出來。可以預計的是,盡管大數據技術層面的應用可以無限廣闊,但是由於受到數據採集的限制,能夠用於商業應用、服務於人們的數據要遠遠小於理論上大數據能夠採集和處理的數據。數據源頭的採集受限將**限制大數據的商業應用。
第二、大數據發揮協同效應需要產業鏈各個環節的企業達成競爭與合作的平衡。
大數據對基於其生態圈中的企業提出了更多的合作要求。如果沒有對整體產業鏈的宏觀把握,單個企業僅僅基於自己掌握的獨立數據,無法了解產業鏈各個環節數據之間的關系,對消費者做出的判斷和影響也十分有限。在一些信息不對稱比較明顯的行業,例如銀行業以及保險業,企業之間數據共享的需求更為迫切。例如,銀行業和保險業通常都需要建立一個行業共享的資料庫,讓其成員能夠了解到單個用戶的信用記錄,消除擔保方和消費者之間的信息不對稱,讓交易進行的更為順利。然而,在很多情況下,這些需要共享信息的企業之間競爭和合作的關系同時存在,企業在共享數據之前,需要權衡利弊、避免在共享數據的同時喪失了其競爭優勢。此外,當很多商家合作起來,很容易形成賣家同盟而導致消費者利益受到損失,影響到競爭的公平性。大數據最具有想像力的發展方向是將不同的行業的數據整合起來,提供全方位立體的數據繪圖,力圖從系統的角度了解並重塑用戶需求。然而,交叉行業數據共享需要平衡太多企業的利益關系,如果沒有中立的第三方機構出面,協調所有參與企業之間的關系、制定數據共性及應用的規則,將**限制大數據的用武之地。權威第三方中立機構的缺乏將制約大數據發揮出其最大的潛力。
第三、大數據結論的解讀和應用。
大數據可以從數據分析的層面上揭示各個變數之間可能的關聯,但是數據層面上的關聯如何具象到行業實踐中?如何制定可執行方案應用大數據的結論?這些問題要求執行者不但能夠解讀大數據,同時還需深諳行業發展各個要素之間的關聯。這一環節基於大數據技術的發展但又涉及到管理和執行等各方面因素。在這一環節中,人的因素成為制勝關鍵。從技術角度,執行人需要理解大數據技術,能夠解讀大數據分析的結論;從行業角度,執行人要非常了解行業各個生產環節的流程的關系、各要素之間的可能關聯,並且將大數據得到的結論和行業的具體執行環節一一對應起來;從管理的角度,執行人需要制定出可執行的解決問題的方案,並且確保這一方案和管理流程沒有沖突,在解決問題的同時,沒有製造出新的問題。這些需求,不但要求執行人深諳技術,同時應當是一個卓越的管理者,有系統論的思維,能夠從復雜系統的角度關聯地看待大數據與行業的關系。此類人才的稀缺性將制約大數據的發展。
❷ 數據分析用什麼軟體
做數據分析,比較好用的軟體有哪些?
數據分析軟體有很多種,每一種都適合不同類型的人員。
簡單說:
Excel:普遍適用,既有基礎,又有中高級。中級一般用Excel透視表,高級的用Excel VBA。
hihidata:比較小眾的數據分析工具。三分鍾就可以學會直接上手。無需下載安裝,直接在線就可以使用。
SPSS:專業統計軟體,沒有統計功底很難用的。同時包含了數據挖掘等高大功能。
SAS:專業統計軟體,專業人士用的,不懂編程還是不要碰了。
MARLAB:建立統計與數學模型,但是比較難學,很難上手。
Eview:比較小眾,建立一些經濟類的模型還是很有用的。計量經濟學中經常用到。
各種BI與報表工具:FineBI,FineReport,tableau,QlikView等。
比較好的數據分析軟體有哪些?
SPSS是軟體里比較簡單的 ,學校里使用的比較多一些,可以採用菜單的模式 帶少量的命令編輯MATLAB常常在建立統計和數學模型的時候比較好用 但是很難學 反正我學了一個學期楞是就知道個皮毛Finereport 兼顧了基本的數據錄入與展現功能,一般的數據源都支持,學習成本比較低,比較適合企業級用戶使用,SAS我沒用過
網站數據分析工具哪個好用些阿?
推薦吆喝科技的ab測試,軟體分析的數據比較全面和精準
學數據分析需要熟悉哪些軟體基礎
軟體只是一個工具 看你要從事的數據分析的方向很深度而定
一般的用excel也可以進行常規簡單的數據分析
再深入一點的用spss、stata、sas
如果要搞數據挖掘的話,用spss modeler / sas
不過一般的常規數據分析用excel和spss基本上能夠應付
常用的數據分析工具有哪些
數據分析的概念太寬泛了,做需要的是側重於數據展示、數據挖掘、還是數據存儲的?是個人用還是企業、部門用呢?應用的場景是製作簡單的個人圖表,還是要做銷售、財務還是供應鏈的分析?
那就說說應用最廣的BI吧,企業級應用,其實功能上已經涵蓋了我上面所述的部分,主要用於數據整合,構建分析,展示數據供決策分析的,譬如FineBI,是能夠」智能」分析數據的工具了。
android數據分析工具用什麼軟體
1. 開源大數據生態圈
Hadoop HDFS、Hadoop MapRece, HBase、Hive 漸次誕生,早期Hadoop生態圈逐步形成。
開源生態圈活躍,並免費,但Hadoop對技術要求高,實時性稍差。
2. 商用大數據分析工具
一體機資料庫/數據倉庫(費用很高)
IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。
數據倉庫(費用較高)
Teradata AsterData, EMC GreenPlum, HP Vertica 等等。
數據集市(費用一般)
QlikView、 Tableau 、國內永洪科技Yonghong Data Mart 等等。
前端展現
用於展現分析的前端開源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。
用於展現分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau 、國內永洪科技Yonghong Z-Suite等等。
數據分析軟體有哪些,他們分別的特點是什麼
除了EXCEL 數據分析用的多的有以下幾個軟體,你看看你們公司符合哪個
SPSS(StatisticalProct and Service Solutions),「統計產品與服務解決方案」軟體,是數據定量分析的工具,適用於社會科學(如經濟分析,市場調研分析)和自然科學等林林總總的統計分析,國內使用的最多,領域也多。
SPSS就如一個傻瓜相機,界面友好,使用簡單,但是功能強大,可以編程,能解決絕大部分統計學問題,適合初學者。它有一個可以點擊的交互界面,能夠使用下拉菜單來選擇所需要執行的命令。它也有一個通過拷貝和粘貼的方法來學習其「句法」語言,但是這些句法通常非常復雜而且不是很直觀。
SPSS致力於簡便易行(其口號是「真正統計,確實簡單」),並且取得了成功。但是如果你是高級用戶,隨著時間推移你會對它喪失興趣。SPSS是制圖方面的強手,由於缺少穩健和調查的方法,處理前沿的統計過程是其弱項。
SAS是全球最大的軟體公司之一,是全球商業智能和分析軟體與服務領袖。SAS由於其功能強大而且可以編程,很受高級用戶的歡迎,也正是基於此,它是最難掌握的軟體之一,多用於企業工作之中。
SAS就如一台單反相機,你需要編寫SAS程序來處理數據,進行分析。如果在一個程序中出現一個錯誤,找到並改正這個錯誤將是困難的。在所有的統計軟體中,SAS有最強大的繪圖工具,由SAS/Graph模塊提供。然而,SAS/Graph模塊的學習也是非常專業而復雜,圖形的製作主要使用程序語言。SAS適合高級用戶使用。它的學習過程是艱苦的,正所謂「五年入門,十年精通」,最初的階段會使人灰心喪氣。然而它還是以強大的數據管理和同時處理大批數據文件的功能,得到高級用戶的青睞。
R 是用於統計分析、繪圖的語言和操作環境,屬於GUN系統的一個自由、免費、源代碼開放的軟體,它是一個用於統計計算和統計制圖的優秀工具,多用於論文,科研領域。
R的思想是:它可以提供一些集成的統計工具,但更大量的是它提供各種數學計算、統計計算的函數,從而使使用者能靈活機動的進行數據分析,甚至創造出符合需要的新的統計計算方法。因此R有很多最新的模型和檢驗方法,但是非常難自學,對英語的要求很高。R與SAS的區別在於,R是開放免費的,處理更靈活,同時對編程要求較高。
大數據是什麼意思?哪些軟體適合大數據分析?
大數據定義什麼的網路很多。個人理解:現有的互聯網數據量越來越大,面對這么大的數據量,如何利用好這些數據是極具挑戰性的。一方面數據量提升,數據處理的方法必須改變,才能提高數據處理速度,比如大規模,高並發的網站訪問,12306,淘寶天貓什麼的;另一方面從這些海量數據中挖掘出有用的信息,比如根據淘寶根據用戶點擊訪問,反饋出用戶的喜好,給用戶推薦相關商品。
推薦Hadoop,適合大數據處理的。
網上學習資料很多,自己搜去!
當然你也可以自己使用資料庫MYSQL等去做大數據處理,這樣很多Hadoop做好的東西都需要你自己去做。要是熟悉某個資料庫,並且應用明確就用資料庫自己去做吧!
加油!
數據分析軟體哪個好
最常用的是spss,屬於非專業統計學的! sas是專業的統計分析軟體,需要編程用,都是專業人士用的 數據分析中的數據挖掘,可以使用spss公司的clementine
大數據分析一般用什麼工具分析
在大數據處理分析過程中常用的六大工具:
Hadoop
Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
HPCC
HPCC,High Performance puting and munications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與 通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。
Storm
Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。
Apache Drill
為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。Apache Drill 實現了 Google's Dremel.
據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,「Drill」已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。
RapidMiner
RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。
Pentaho BI
Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。
❸ 數據處理軟體有哪些
大數據分析平台是一個集成性的平台,可以將企業用戶所用的數據接入,然後在該平台上進行處理,最後對得到的數據,通過各種方式進行分析展示。
大數據平台應該是集數據整合、數據處理、數據存儲、數據分析、可視化、數據採集填報等功能為一體,真正幫助企業挖掘數據背後的業務邏輯,洞悉數據的蛛絲馬跡,發現數據的潛在價值。億信華辰的一站式數據分析平台ABI,就是大數據分析平台的一個典型代表。該平台融合了數據源適配、ETL數據處理、數據建模、數據分析、數據填報、工作流、門戶、移動應用等核心功能。採用輕量級SOA架構設計、B/S模式,各模塊間無縫集成。支持廣泛的數據源接入。數據整合模塊支持可視化的定義ETL過程,完成對數據的清洗、裝換、處理。數據集模塊支持資料庫、文件、介面等多方式的數據建模。數據分析模塊支持報表分析、敏捷看板、即席報告、幻燈片、酷屏、數據填報、數據挖掘等多種分析手段對數據進行分析、展現、應用。
❹ 如何獲取大數據信息
一、公開資料庫
常用數據公開網站:
UCI:經典的機器學習、數據挖掘數據集,包含分類、聚類、回歸等問題下的多個數據集。很經典也比較古老,但依然活躍在科研學者的視線中。
國家數據:數據來源中華人民共和國國家統計局,包含了我國經濟民生等多個方面的數據,並且在月度、季度、年度都有覆蓋,全面又權威。
亞馬遜:來自亞馬遜的跨科學雲數據平台,包含化學、生物、經濟等多個領域的數據集。
figshare:研究成果共享平台,在這里可以找到來自世界的大牛們的研究成果分享,獲取其中的研究數據。
github:一個非常全面的數據獲取渠道,包含各個細分領域的資料庫資源,自然科學和社會科學的覆蓋都很全面,適合做研究和數據分析的人員。
二、利用爬蟲可以獲得有價值數據
這里給出了一些網站平台,我們可以使用爬蟲爬取網站上的數據,某些網站上也給出獲取數據的API介面,但需要付費。
1.財經數據,2.網貸數據;3.公司年報;4.創投數據;5.社交平台;6.就業招聘;7.餐飲食品;8.交通旅遊;9.電商平台;10.影音數據;11.房屋信息;12.購車租車;13.新媒體數據;14.分類信息。
三、數據交易平台
由於現在數據的需求很大,也催生了很多做數據交易的平台,當然,出去付費購買的數據,在這些平台,也有很多免費的數據可以獲取。
優易數據:由國家信息中心發起,擁有國家級信息資源的數據平台,國內領先的數據交易平台。平台有B2B、B2C兩種交易模式,包含政務、社會、社交、教育、消費、交通、能源、金融、健康等多個領域的數據資源。
數據堂:專注於互聯網綜合數據交易,提供數據交易、處理和數據API服務,包含語音識別、醫療健康、交通地理、電子商務、社交網路、圖像識別等方面的數據。
四、網路指數
網路指數:指數查詢平台,可以根據指數的變化查看某個主題在各個時間段受關注的情況,進行趨勢分析、輿情預測有很好的指導作用。除了關注趨勢之外,還有需求分析、人群畫像等精準分析的工具,對於市場調研來說具有很好的參考意義。同樣的另外兩個搜索引擎搜狗、360也有類似的產品,都可以作為參考。
阿里指數:國內權威的商品交易分析工具,可以按地域、按行業查看商品搜索和交易數據,基於淘寶、天貓和1688平台的交易數據基本能夠看出國內商品交易的概況,對於趨勢分析、行業觀察意義不小。
友盟指數:友盟在移動互聯網應用數據統計和分析具有較為全面的統計和分析,對於研究移動端產品、做市場調研、用戶行為分析很有幫助。除了友盟指數,友盟的互聯網報告同樣是了解互聯網趨勢的優秀讀物。
五、網路採集器
網路採集器是通過軟體的形式實現簡單快捷地採集網路上分散的內容,具有很好的內容收集作用,而且不需要技術成本,被很多用戶作為初級的採集工具。
造數:新一代智能雲爬蟲。爬蟲工具中最快的,比其他同類產品快9倍。擁有千萬IP,可以輕松發起無數請求,數據保存在雲端,安全方便、簡單快捷。
火車採集器:一款專業的互聯網數據抓取、處理、分析,挖掘軟體,可以靈活迅速地抓取網頁上散亂分布的數據信息。
八爪魚:簡單實用的採集器,功能齊全,操作簡單,不用寫規則。特有的雲採集,關機也可以在雲伺服器上運行採集任務。
❺ 有沒有推薦的數據標注的兼職平台
1.通過我們調查,目前網路上還沒有正規專業的數據標注兼職平台。因為數據標注項目的特殊性,有許多項目也是無法通過兼職平台來放任務的。
2.目前數據標注主要還是通過眾包 ,分包任務的形式來分發任務
3.目前適合個人兼職的數據標注平形式主要有以下幾類
a. 網路眾包、京東眾包、科大訊飛這類平台 也有很多適合個人的項目,這種大平台信譽價格方面都可以保證的
b. 還有就是目前主要的數據標注兼職途徑,這類就是 微信QQ社群裡面好多手上有項目的公司他們通過微信QQ群招收兼職人群做任務,這類途徑的任務有些會因為信譽問題辛苦勞動而不結賬找不到人的。
c. 數加加、數據堂等信息小程序的任務形式 ,這類平台一般價格低
d.像豬八戒這種微客平台,走任務擔保形式。
f. 還有就是如找標注網這種專業的找標注項目,找標注團隊,標注數據採集,供需雙方信息交流數據標注接單平台,平台上活躍著相當多的項目團隊,標注項目完全需要供需雙方商談。人工智慧產業的迅猛發展帶來與之相關的數據產業的爆發性成長,人工智慧相關的數據標注需求是龐大的。數據標注是人工智慧產業的基礎,是機器感知現實世界的起點。從某種程度上來說,沒有經過標注的數據就是無用數據。由於數據標注行業的行業入門門檻低,從而帶動了大批數據標注從業人員,從業人員的大量增加對項目需求就會越來越多,也因此找數據標注項目、找數據標注團隊、數據採集需求的綜合性供需平台顯的非常有必要。
數據標注項目從哪裡接單?這些問題受到廣大從業人員的格外關注。我們對行業進行分析調查之後,給大家介紹目前有哪些靠譜的數據標注接單平台:
一、網路、京東、科大訊飛,這類頭部企業信譽是不會有任何問題的,加入門檻也不高,他們本身項目眾多但參與做項目的團隊人數也眾多。
二、龍貓、海天瑞聲、數據堂、數加加、倍賽這類專門做數據服務的公司,他們主要以承接甲方項目然後外包為主,做這類平台的業務基本上公司有實力,團隊大,有關系渠道,數據質量穩定,個人或者小工作室基本上就接不到這種項目的
三、類似集合找數據標注項目,找數據標注團隊 、數據採集供求,信息經驗交流的平台,這類平台目前很少,大平台更少。目前就找標注網平台還算是人氣項目比較活躍的,這種平台符合滿足了工作室、個人,公司項目方的多樣需求,但是信譽方面需要項目合作雙方自己去判斷。
以上這些是目前小編整理出的相對來說靠譜的數據標注接單平台,希望對大家有幫助。
❻ 如何搭建大數據分析平台
一般的大數據平台從平台搭建到數據分析大概包括以下幾個步驟:❼ 大數據公司的四種數據獲取方法
大數據公司的四種數據獲取方法_數據分析師考試
對於所有號稱涉足大數據的互聯網公司而言,可以從兩方面判斷其前景與價值,其一是否有穩定的數據源,其二是否有持續的變現能力,其中包含數據理解運用的經驗積累。涉及大數據的公司發展在互聯網時代如雨後春筍,除了巨頭網路騰訊阿里巴巴外,還有一些成立時間不算久但底蘊深厚的公司。如國雲數據、帆軟等。不過不管公司多大,獲取數據都是非常重要的基礎。
就數據獲取而言,大的互聯網企業由於自身用戶規模龐大,把自身用戶的電商交易、社交、搜索等數據充分挖掘,已經擁有穩定安全的數據資源。那麼對於其它大數據公司而言,目前大概有四類數據獲取方法:
第一、利用廣告聯盟的競價交易平台。比如你從廣告聯盟上購買某搜索公司廣告位1萬次展示,那麼基本上搜索公司會給你10萬次機會讓你選取,每次機會實際上包含對客戶的畫像描述。如果你購買的量比較大,積累下來也能有一定的互聯網用戶數據資料,可能不是實時更新的資料。這也是為什麼用戶的搜索關鍵詞通常與其它網站廣告位的推薦內容緊密相關,實質上是搜索公司通過廣告聯盟方式,間接把用戶搜索畫像數據公開了。
第二、利用用戶Cookie數據。Cookie就是伺服器暫時存放在用戶的電腦里的資料(.txt格式的文本文件),好讓伺服器用來辨認計算機。互聯網網站可以利用cookie跟蹤統計用戶訪問該網站的習慣,比如什麼時間訪問,訪問了哪些頁面,在每個網頁的停留時間等。也就是說合法的方式某網站只能查看與該網站相關的Cookie信息,只有非法方式或者瀏覽器廠家有可能獲取客戶所有的Cookie數據。真正的大型網站有自己的數據處理方式,並不依賴Cookie,Cookie的真正價值應該是在沒有登錄的情況下,也能識別客戶身份,是什麼時候曾經訪問過什麼內容的老用戶,而不是簡單的遊客。
第三、利用APP聯盟。APP是獲取用戶移動端數據的一種有效手段,在APP中預埋SDK插件,用戶使用APP內容時就能及時將信息匯總給指定伺服器,實際上用戶沒有訪問時,APP也能獲知用戶終端的相關信息,包括安裝了多少個應用,什麼樣的應用。單個APP用戶規模有限,數據量有限,但如某數據公司將自身SDK內置到數萬數十萬APP中,獲取的用戶終端數據和部分行為數據也會達到數億的量級。
第四、與擁有穩定數據源公司進行戰略合作。上述三種方式獲取的數據均存在完整性、連續性的缺陷,數據價值有限。BAT巨頭自身價值鏈較為健全,數據變現通道較為完備,不會輕易輸出數據與第三方合作(獲取除外)。政府機構的數據要麼全部免費,要麼屬於機密,所以不會有商業性質的合作。擁有完整的互聯網(含移動互聯網)的通道數據資源,同時變現手段及能力欠缺的運營商,自然成為大數據合作的首選目標。
以上是小編為大家分享的關於大數據公司的四種數據獲取方法的相關內容,更多信息可以關注環球青藤分享更多干貨