A. 資料庫尖端技術有哪些
1、 【定義】 是指高技術領域中具有前瞻性、先導性和探索性的重大技術,是未來高技術更新換代和新興產業發展的重要基礎,是國家高技術創新能力的綜合體現。 2、 【選擇前沿技術的主要原則】 一是代表世界高技術前沿的發展方向。二是對國家未來新興產業的形成和發展具有引領作用。三是有利於產業技術的更新換代,實現跨越發展。四是具備較好的人才隊伍和研究開發基礎。根據以上原則,要超前部署一批前沿技術,發揮科技引領未來發展的先導作用,提高我國高技術的研究開發能力和產業的國際競爭力。世界知識產權組織2015年11月11日發布《2015年世界知識產權報告:突破式創新與經濟增長》,分析了3D列印、納米技術和機器人工程學等擁有促進未來經濟增長潛力的新技術,並指出中國是在這3項最尖端前沿技術創新方面惟一向先進工業化國家靠近的新興市場國家。
B. 大數據技術有哪些
簡單以永洪科技的技術說下,有四方面,其實也代表了部分通用大數據底層技術:
Z-Suite具有高性能的大數據分析能力,她完全摒棄了向上升級(Scale-Up),全面支持橫向擴展(Scale-Out)。Z-Suite主要通過以下核心技術來支撐PB級的大數據:
跨粒度計算(In-DatabaseComputing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。
並行計算(MPP Computing)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。
列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -10倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。
內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關鍵應用技術。
C. 常用的資料庫安全技術有哪些
1)用戶標識和鑒別:該方法由系統提供一定的方式讓用戶標識自己咱勺名字或身份。每次用戶要求進入系統時,由系統進行核對,通過鑒定後才提供系統的使用權。
(2)存取控制:通過用戶許可權定義和合法權檢查確保只有合法許可權的用戶訪問資料庫,所有未被授權的人員無法存取數據。例如C2級中的自主存取控制(I)AC),Bl級中的強制存取控制(M.AC)。
(3)視圖機制:為不同的用戶定義視圖,通過視圖機制把要保密的數據對無權存取的用戶隱藏起來,從而自動地對數據提供一定程度的安全保護。
(4)審計:建立審計日誌,把用戶對資料庫的所有操作自動記錄下來放人審計日誌中,DBA可以利用審計跟蹤的信息,重現導致資料庫現有狀況的一系列事件,找出非法存取數據的人、時間和內容等。
(5)數據加密:對存儲和傳輸的數據進行加密處理,從而使得不知道解密演算法的人無法獲知數據的內容。
D. 大數據技術包括哪些
大數據處理關鍵技術一般包括:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。
E. 資料庫技術的主要目的是什麼包括什麼
資料庫技術的主要目的是研究如何組織和存儲數據,如何高效地獲取和處理數據。包括:信息,數據,數據處理,資料庫,資料庫管理系統以及資料庫系統等。
資料庫技術是信息系統的一個核心技術。是一種計算機輔助管理數據的方法,它研究如何組織和存儲數據,如何高效地獲取和處理數據。是通過研究資料庫的結構、存儲、設計、管理以及應用的基本理論和實現方法,並利用這些理論來實現對資料庫中的數據進行處理、分析和理解的技術。
資料庫技術涉及到許多基本概念,主要包括:信息,數據,數據處理,資料庫,資料庫管理系統以及資料庫系統等。
地位:
資料庫技術是現代信息科學與技術的重要組成部分,是計算機數據處理與信息管理系統的核心。資料庫技術研究和解決了計算機信息處理過程中大量數據有效地組織和存儲的問題。
在資料庫系統中減少數據存儲冗餘、實現數據共享、保障數據安全以及高效地檢索數據和處理數據。資料庫技術的根本目標是要解決數據的共享問題。
F. 資料庫有哪些新技術
SQLServer是大眾化的吧
超大型資料庫orical用的比較多
小型免費mySQL最多
還有DB2等
新技術接觸不多,給你個鏈接你看下網頁鏈接
G. 資料庫技術的應用領域有哪些
1、多媒體資料庫
這類資料庫主要存儲與多媒體相關的數據,如聲音、圖像和視頻等數據。多媒體數據最大的特點是數據連續,而且數據量比較大,存儲需要的空間較大。
2、移動資料庫
該類資料庫是在移動計算機系統上發展起來的,如筆記本電腦、掌上計算機等。該資料庫最大的特點是通過無線數字通信網路傳輸的。移動資料庫可以隨時隨地地獲取和訪問數據,為一些商務應用和一些緊急情況帶來了很大的便利。
3、資料庫技術在多媒體技術方面的應用。
相對比傳統的資料庫技術,這種結合了多媒體技術的資料庫,以多媒體技術的優勢使得數據界面的豐富化並對於兩者結合所可能帶來的相關技術問題給予了充分解決,相關資料庫方面的安全性得到了很好的提高。
多媒體資料庫設計中有很多問題需要解決:用戶介面支持方面、資料庫組織與存儲方面、媒體種類增加方面信息的分布影響方面。
4、信息檢索系統
信息檢索就是根據用戶輸入的信息,從資料庫中查找相關的文檔或信息,並把查找的信息反饋給用戶。信息檢索領域和資料庫是同步發展的,它是一種典型的聯機文檔管理系統或者聯機圖書目錄。
5、分布式信息檢索
這類資料庫是隨著Internet的發展而產生的資料庫。它一般用於網際網路及遠距離計算機網路系統中。特別是隨著電子商務的發展,這類資料庫發展更加迅猛。
許多網路用戶(如個人、公司或企業等)在自己的計算機中存儲信息,同時希望通過網路使用發送電子郵件、文件傳輸、遠程登錄方式和別人共享這些信息。分布式信息檢索滿足了這一要求。
H. 資料庫給人們生活帶來哪些效益帶來
現在的信息系統一般都是用資料庫來存儲數據,利用資料庫可以高效的對數據進行管理,包括數據的有效組織,查詢和修改,同時可容易實現備份和恢復。
資料庫的存儲空間很大,可以存放百萬條、千萬條、上億條數據。但是資料庫並不是隨意地將數據進行存放,是有一定的規則的,否則查詢的效率會很低。
當今世界是一個充滿著數據的互聯網世界,充斥著大量的數據。即這個互聯網世界就是數據世界。數據的來源有很多,比如出行記錄、消費記錄、瀏覽的網頁、發送的消息等等。除了文本類型的數據,圖像、音樂、聲音都是數據。
發展現狀
在資料庫的發展歷史上,資料庫先後經歷了層次資料庫、網狀資料庫和關系資料庫等各個階段的發展,資料庫技術在各個方面的快速的發展。
特別是關系型資料庫已經成為目前資料庫產品中最重要的一員,80年代以來, 幾乎所有的資料庫廠商新出的資料庫產品都支持關系型資料庫,即使一些非關系資料庫產品也幾乎都有支持關系資料庫的介面。
這主要是傳統的關系型資料庫可以比較好的解決管理和存儲關系型數據的問題。隨著雲計算的發展和大數據時代的到來,關系型資料庫越來越無法滿足需要,這主要是由於越來越多的半關系型和非關系型數據需要用資料庫進行存儲管理。
以此同時,分布式技術等新技術的出現也對資料庫的技術提出了新的要求,於是越來越多的非關系型資料庫就開始出現,這類資料庫與傳統的關系型資料庫在設計和數據結構有了很大的不同。
它們更強調資料庫數據的高並發讀寫和存儲大數據,這類資料庫一般被稱為NoSQL(Not only SQL)資料庫。 而傳統的關系型資料庫在一些傳統領域依然保持了強大的生命力。
I. 大數據方面核心技術有哪些
簡單來說,從大數據的生命周期來看,無外乎四個方面:大數據採集、大數據預處理、大數據存儲、大數據分析,共同組成了大數據生命周期里最核心的技術,下面分開來說:
大數據採集
大數據採集,即對各種來源的結構化和非結構化海量數據,所進行的採集。
資料庫採集:流行的有Sqoop和ETL,傳統的關系型資料庫MySQL和Oracle 也依然充當著許多企業的數據存儲方式。當然了,目前對於開源的Kettle和Talend本身,也集成了大數據集成內容,可實現hdfs,hbase和主流Nosq資料庫之間的數據同步和集成。
網路數據採集:一種藉助網路爬蟲或網站公開API,從網頁獲取非結構化或半結構化數據,並將其統一結構化為本地數據的數據採集方式。
文件採集:包括實時文件採集和處理技術flume、基於ELK的日誌採集和增量採集等等。
大數據預處理
大數據預處理,指的是在進行數據分析之前,先對採集到的原始數據所進行的諸如「清洗、填補、平滑、合並、規格化、一致性檢驗」等一系列操作,旨在提高數據質量,為後期分析工作奠定基礎。數據預處理主要包括四個部分:數據清理、數據集成、數據轉換、數據規約。
數據清理:指利用ETL等清洗工具,對有遺漏數據(缺少感興趣的屬性)、噪音數據(數據中存在著錯誤、或偏離期望值的數據)、不一致數據進行處理。
數據集成:是指將不同數據源中的數據,合並存放到統一資料庫的,存儲方法,著重解決三個問題:模式匹配、數據冗餘、數據值沖突檢測與處理。
數據轉換:是指對所抽取出來的數據中存在的不一致,進行處理的過程。它同時包含了數據清洗的工作,即根據業務規則對異常數據進行清洗,以保證後續分析結果准確性。
數據規約:是指在最大限度保持數據原貌的基礎上,最大限度精簡數據量,以得到較小數據集的操作,包括:數據方聚集、維規約、數據壓縮、數值規約、概念分層等。
大數據存儲,指用存儲器,以資料庫的形式,存儲採集到的數據的過程,包含三種典型路線:
1、基於MPP架構的新型資料庫集群
採用Shared Nothing架構,結合MPP架構的高效分布式計算模式,通過列存儲、粗粒度索引等多項大數據處理技術,重點面向行業大數據所展開的數據存儲方式。具有低成本、高性能、高擴展性等特點,在企業分析類應用領域有著廣泛的應用。
較之傳統資料庫,其基於MPP產品的PB級數據分析能力,有著顯著的優越性。自然,MPP資料庫,也成為了企業新一代數據倉庫的最佳選擇。
2、基於Hadoop的技術擴展和封裝
基於Hadoop的技術擴展和封裝,是針對傳統關系型資料庫難以處理的數據和場景(針對非結構化數據的存儲和計算等),利用Hadoop開源優勢及相關特性(善於處理非結構、半結構化數據、復雜的ETL流程、復雜的數據挖掘和計算模型等),衍生出相關大數據技術的過程。
伴隨著技術進步,其應用場景也將逐步擴大,目前最為典型的應用場景:通過擴展和封裝 Hadoop來實現對互聯網大數據存儲、分析的支撐,其中涉及了幾十種NoSQL技術。
3、大數據一體機
這是一種專為大數據的分析處理而設計的軟、硬體結合的產品。它由一組集成的伺服器、存儲設備、操作系統、資料庫管理系統,以及為數據查詢、處理、分析而預安裝和優化的軟體組成,具有良好的穩定性和縱向擴展性。
四、大數據分析挖掘
從可視化分析、數據挖掘演算法、預測性分析、語義引擎、數據質量管理等方面,對雜亂無章的數據,進行萃取、提煉和分析的過程。
1、可視化分析
可視化分析,指藉助圖形化手段,清晰並有效傳達與溝通信息的分析手段。主要應用於海量數據關聯分析,即藉助可視化數據分析平台,對分散異構數據進行關聯分析,並做出完整分析圖表的過程。
具有簡單明了、清晰直觀、易於接受的特點。
2、數據挖掘演算法
數據挖掘演算法,即通過創建數據挖掘模型,而對數據進行試探和計算的,數據分析手段。它是大數據分析的理論核心。
數據挖掘演算法多種多樣,且不同演算法因基於不同的數據類型和格式,會呈現出不同的數據特點。但一般來講,創建模型的過程卻是相似的,即首先分析用戶提供的數據,然後針對特定類型的模式和趨勢進行查找,並用分析結果定義創建挖掘模型的最佳參數,並將這些參數應用於整個數據集,以提取可行模式和詳細統計信息。
3、預測性分析
預測性分析,是大數據分析最重要的應用領域之一,通過結合多種高級分析功能(特別統計分析、預測建模、數據挖掘、文本分析、實體分析、優化、實時評分、機器學習等),達到預測不確定事件的目的。
幫助分用戶析結構化和非結構化數據中的趨勢、模式和關系,並運用這些指標來預測將來事件,為採取措施提供依據。
4、語義引擎
語義引擎,指通過為已有數據添加語義的操作,提高用戶互聯網搜索體驗。
5、數據質量管理
指對數據全生命周期的每個階段(計劃、獲取、存儲、共享、維護、應用、消亡等)中可能引發的各類數據質量問題,進行識別、度量、監控、預警等操作,以提高數據質量的一系列管理活動。
以上是從大的方面來講,具體來說大數據的框架技術有很多,這里列舉其中一些:
文件存儲:Hadoop HDFS、Tachyon、KFS
離線計算:Hadoop MapRece、Spark
流式、實時計算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL資料庫:HBase、Redis、MongoDB
資源管理:YARN、Mesos
日誌收集:Flume、Scribe、Logstash、Kibana
消息系統:Kafka、StormMQ、ZeroMQ、RabbitMQ
查詢分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式協調服務:Zookeeper
集群管理與監控:Ambari、Ganglia、Nagios、Cloudera Manager
數據挖掘、機器學習:Mahout、Spark MLLib
數據同步:Sqoop
任務調度:Oozie