導航:首頁 > 數據處理 > 智能製造如何提升數據價值

智能製造如何提升數據價值

發布時間:2023-12-13 15:14:23

『壹』 智能工廠中設備數據採集的意義與解決方案

智能工廠浪潮下,設備聯網的重要性凸顯。大數據時代,工業設備聯網的主要目的就是實現數據採集、傳輸、建模、查詢與可視化,這是智能工廠、透明工廠的基礎。比如生產設備的稼動率數據,在製造企業生產時,為了確保生產過程中的穩定性、高效性,需要在生產過程中實時收集和監控相關數據,達到設備運轉的透明化監控。那麼,現代化智能工廠中又要如何實現數據採集呢?

設備數據採集難

在智能工廠解決方案中,可以通過數字生產設備或系統的介面直接集成數據信息,新建設的智能工廠可直接採用這一方式。而對於存量的生產工廠,從零開始建造智能工廠,購置全新設備,顯然不符合現實。

在工業企業,設備使用20-30年甚至30年以上都很常見,這部分的設備入網涉及到設備改造、設備調試、介面等問題,入網成一大難點,更別說智能工廠建設運維了。加上絕大多數工廠的安燈信息依然只靠人工錄入,無法真正實現自動化數據採集!由此帶來的結果就是,這部分工廠設備稼動狀況不透明,生產效率改善難以入手!

老舊設備數據集采方案

那麼對於這部分老舊設備的數據獲取,除了人工採集之外,還有哪些現代化的方式呢?行業內普遍認可的方案是通過在設備端附加感測器與邊緣計算部件,以此自動採集、提取生產製造中的有效生產數據,使其具備物聯網的能力。

ALSI大連的設備狀態監視系統,是通過在產線原有三色燈上加裝智能數據採集器,通過自動採集三色燈號,把數據遞給相關責任人、Lighthouse應用系統,或已有的MES等系統,以此實時掌握所有設備的運行狀況。

設備狀態監視系統由智能數據採集器、智能網關和軟體Lighthouse應用系統組成,由阿爾卑斯系統集成(大連)有限公司(ALSI大連)自主研發,系統擁有強大的數據採集、傳輸與運算能力:

· 智能數據採集器:AlSI大連自主研發,已獲國家實用新型專利。適用於任何品牌、年代的設備,即插即用,易用性強;領先感測器技術,精度達到毫秒級,可採集超過27種設備狀態;採集端支持升級更新,配置「心跳」功能,用於採集端故障自檢。

· 智能網關:1個網關,支持50台設備的狀態採集;數據採集傳輸使用抗干擾強的無線通信技術ZigBee,靈活應對產線布局變更;具備邊緣計算能力,可緩存本地數據,即使網路出現異常時,數據也不會丟失。

· Lighthouse應用系統:支持實時監視與追溯查詢;系統自動統計分析設備運轉率、故障率和修理時間;安全加密有保障;

設備狀態監視系統在擁有強大數據採集「內核」之外,對於智能工廠轉型上的友好性還在於設備入網「好改造、成本低」這一巨大優勢。可以說,設備狀態監視系統是存量傳統工廠轉型智能工廠的「好幫手」。目前設備狀態監視系統已經應用於眾多生產製造車間,通過生產數據採集與運用,成功幫助部分生產製造企業實現產線智能化、可視化,向智能工廠智能製造邁進。

更多智能製造解決方案詳見

ALSI大連_精益生產_智能工廠_設備監控系統_阿爾卑斯系統集成(大連)有限公司

『貳』 製造企業如何借力工業大數據

製造企業如何借力工業大數據
工業大數據和原來的信息化有何區別?
簡單來說,1990年代以前,大部分企業都在做企業內部信息化,這被稱為第一次浪潮。1990年代以後,互聯網開始席捲全球,企業相繼進行互聯網化。而隨著信息化與工業化的深度融合,工業大數據悄然興起,這也將成為下一個提升製造業生產力的技術前沿。在清華大學工業大數據研究中心主任王建民看來,工業大數據即第三次工業變革,它以智能互聯的產品為核心載體,而不單純只是通過互聯網增值。
王建民認為,在製造業的利潤越來越低的情況下,工業大數據可以幫助中國企業提高產品在使用維護階段的利潤。最重要的是,利用數據進行跨界運營,能夠為企業帶來新的生存空間。
利用大數據搶占價值高地
為什麼工業大數據對當下的中國企業來說,有著如此深遠的意義?
事實上,在王建民看來,一個復雜裝備的生命周期分三個階段,即:開發製造階段(Beginning of Life,簡稱BOL)、使用維護階段(Middle of Life,簡稱MOL)、回收利用階段(即End of Life,簡稱EOL)。
原來,製造企業將重心放在開發製造階段,企業的核心目標就是將裝備設計製造出來。而產品售賣給消費者後,就和企業沒有關系或者變得無關緊要了。所以生命周期的第二、三階段,常常被企業忽略。但裝備的價值真正體現在用戶的使用體驗上,而不在於製造,盡管製造由質量決定。但消費者在使用階段的流暢程度,才能反映出產品的最終功效。
加工製造環節的確能夠產生很多利潤,但在當前環境下,生產製造的利潤越來越薄,使企業越來越難以為繼。而中國是一個製造大國,更是一個使用大國,製造業的興衰事關重大。王建民認為,只有利用大數據搶占價值高地,實現產品智能化,才能實現從「中國製造」到「中國創造」的轉變,從「生產型製造」到「服務型製造」轉變,這也是「中國製造2025」戰略的應有之義。
跨界運營是工業互聯網轉型的核心
和之前很多技術一樣,工業大數據並非橫空出世,而是一脈相承。但又有新的變化,這種新的變化,在王建民看來,其核心在於連接,將原來孤立的機器連接起來,將人和機器連接起來,將不同的企業、行業連接起來。
事實上,這種連接已經產生了巨大的價值,有很多企業已經開始實踐了。
例如:將人和產品聯系起來,可以實現產品創新。日本科研人員設計出一種新型汽車座椅,根據駕駛者的體重、壓力值等數據識別主人,以判斷駕駛者是否為主人,從而決定是否啟動。
又例如:將兩個不同領域連接起來,可以實現銷售模式的創新。歐洲人可以做到今天賣明天的風電,怎麼賣?他們根據一系列數據,對明天的風力精準地進行測算,從而實現當天交易。這是風電裝備在整個大氣環境下進行的跨界運營的絕佳案例。
還有一個例子,《哈佛商業評論》曾經發表過一篇文章叫《智慧的互聯產品》。美國人認為未來的工業產品應該分為五個階段,到第四個階段的時候,裝備、產品會進入到一個產品的系統階段,機器和機器之間可以對話和合作。比如在農業領域,播種器械、收獲器械會聯合起來到一個農場去作業。而終極階段是:農業機器的集群和天氣的數據,會和種子的數據、灌溉系統的數據聯合起來,通過全方位的連接來解決農業生產中的綠色節能問題。
王建民說,通過跨界運營來創新是工業互聯網轉型的核心。在使用階段做一個簡單的維修、更換配件,不管是預防性維修還是主動維修,都還處於工業互聯網的初級階段。只有通過數據進行跨界運營,才抓住了整個裝備製造業在服務階段轉型升級的核心。
工業大數據應避免的三個誤區
聽上去很美好的工業大數據,如何實踐呢?王建民梳理了三大誤區,以供企業參考:
一、維修=運行
在工業領域,維修和運行基本不會分開。但是在工業大數據里,二者是分開的。維修指的是,當產品性能下降的時候,通過更換零件或者其他手段,恢復其產品性能。而運行是指如何使用機器,使它產生價值。
二、產業大數據等同於消費大數據
工業大數據最核心的問題在於分析結果的可靠性。在消費大數據上,如果產品的廣告推薦能達到20‰的可靠性,就是搜索引擎的最好水平。但這一數據在工業領域,顯然遠遠不夠。因為在工業領域,往往是失之毫釐,差之千里。工業的應用場景對數據准確率的要求達到99.9%,甚至更高,否則就會造成嚴重的經濟損失乃至安全事故的發生。所以,王建民建議,從人員結構上來講,工業大數據需要數據和產業的人才一起來做。
三、採集的數據越多越好
對於企業而言,機器採集的數據有時候是一個災難,不是企業採集的所有數據都是有用的。不產生價值的數據就是垃圾信息,對於企業而言就是負擔。企業在收集數據之前,首要任務是給數據畫像,弄明白自己到底需要什麼樣的數據。
王建民認為,無論如何,大數據仍然要圍繞裝備增值服務的業務邏輯,在達到這個目的的過程中,讓數據發揮作用,而非簡單地只看到數據,而忽略了根本的邏輯。

『叄』 智能製造:工業製造中的大數據分析

搞清出工業大數據分析,第一步我們應該如何定義製造業的大數據?這里我和大家通過大數據的三個特性,來經一步了解大數據的特性。

1

關注#1 -工業大數據數據來源

工業大數據的主要來源有兩個,第一類數據來源與智能設備。普適計算有很大的空間,現代工人可以帶一個普適感應器等設備來參加生產和管理。所以工業數據源是280億左右大量設備之間的關聯,這個是我們未來需要去採納的數據源之一。

第二個數據來源於人類軌跡產生的數據,包括在現代工業製造鏈中,從采購,生產,物流與銷售市場的內部流程以及外部互聯網訊息等,都是此類大數據的戰場。通過行為軌跡數據與設備數據的結合,大數據可以幫助我們實現客戶的分析和挖掘,它的應用場景包括了實時核心,交易,服務,後台服務等。

2

關注#2 -數據的關系

數據必須要放到相應的環境中一起分析,這樣才能了解數據之間的關系,可以分析出問題的根本原因(root cause)。譬如,每一款新機型在交付給航空公司之前都會接受一系列殘酷的飛行測試。極端天氣測試就是多項嚴酷的測試之一。該測試的目的是為了確保飛機的發動機、材料和控制系統能在極端天氣條件下正常運行。

問題的處理關鍵在於找到產生問題的根源,而以知錯誤的消除,關鍵在於解決方案的可靠有效。一旦找到並確定了根本原因,同時產生了可接受的應急措施,就可把問題當成一個已知錯誤來處理。問題調查的過程一定需要收集所有可用,與事件相關的信息來確定並消除引起事件和問題的根本原因。數據採集與分析必須要事件/問題發生的環境數據結合。

3

關注#3 -數據的收益

對於數字化轉型的其他方面而言,大數據不僅要關注實際數據量的多少,而最重要的是關注在大數據的處理方法在特定的場合的應用,讓數據產生巨大的創新價值。如果離開了收益考慮或投資回報的設計,一味尋求大數據既無法落地也無法為企業創造價值。

工業大數據分析的定義

生產執行系統(MES)與飛機發動機 健康 管理系統如出一轍。我們可以從工廠的生產中,實時採集到海量的流程,變數,測量結果等數據。這些數據來源的原因都是因為在製造環境中,設備或資產連接後所產生的現象。然而基於大量數據集而生成的報表,或是基礎統計的分析並不足以稱之為製造業的大數據分析。

所以如果製造業大數據分析不僅僅意味著數據的量,作為一個行業,我們應該如何定義製造業的大數據分析?「大數據不僅僅是大量的數據」這句話裡麵包含了多重涵義。

當代大數據處理技術的價值在於技術進步,同時也是因為技術進步,使大數據成為商業中有價值的核心驅動因素。作為智能製造的三駕馬車之一,工業大數據分析已經被多數的製造企業所認知並接受。許多製造業企業認為自己在生產運營方面也累積了大量的數據,是時候可以用到大數據了。

數據類型的多樣性

大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,便是,人們設法收集,並弄清楚,不斷變化的數據類型。如果只是大量採集同一類型的數據的話,再大的數據量都不能稱之為大數據。

數據必須包括高度可變性和種類多樣性。製造工廠中存在無數的大數據應用,但並不包括簡單地分類和展示一連串的流程測量結果,這些工作基本的統計展現就可以完成。一些大數據資料庫或數據湖的構成部分數據類型也是文本信息、圖像數據、地理或地質信息和非結構信息,例如,通過社交媒體或其他協作平台獲得的數據類型。

製造業信息結構概括起來分為兩層,一個是管理層,一個是自動化層。從經營管理,生產執行與控制三個緯度來實現決策支持、管理、生產執行、過程式控制制以及設備的連接與感測。製造業中大數據分析是指利用通用的數據模型,將管理層與自動化層的結構性系統數據與非結構性數據結合,進而通過先進的分析工具發現新的洞見。

大數據分析對生產的意義

製造業的創新的核心就是要依託大量的前沿 科技 。先進的技術是創新的手段。在新技術的支持下,可以通過一體化的製造運作管理系統MOM將企業管理應用系統,例如ERP,MES等系統與工業自動化的相關系統整合為一體。

從兩化融合的角度來看,信息系統供應商要從企業的主信息系統提供商定位來做好規劃、標准、功能設計、實施策略的統一性工作。協助企業做好風險控制,降低投資,降低操作維護成本,實現企業信息系統全集成。

閱讀全文

與智能製造如何提升數據價值相關的資料

熱點內容
蘭州市蘭海建材市場怎麼樣 瀏覽:749
程序員在金華工資一般多少 瀏覽:47
h81ms1屬於什麼產品類型 瀏覽:4
銀團貸款怎麼交易 瀏覽:310
招工信息的報紙有哪些 瀏覽:855
乙肝一期陽性數據什麼意思 瀏覽:598
抖音農產品視頻怎麼拍 瀏覽:56
CPU如何讀取內存卡的數據 瀏覽:69
廉租房多久可以交易 瀏覽:558
試管嬰兒技術未來來解決哪些問題 瀏覽:945
什麼是大數據人跑步 瀏覽:449
信息監管基礎信息怎麼報 瀏覽:496
如何查寶馬配置信息 瀏覽:721
怎麼提高洗化產品銷售 瀏覽:484
統計學vs大數據哪個好 瀏覽:529
如何查到駕校校長身份信息 瀏覽:596
網上買電影票是什麼程序 瀏覽:170
余額寶交易記錄多久自行刪除 瀏覽:9
dawd怎麼交易 瀏覽:593
怎麼在抖音關閉小程序 瀏覽:984