導航:首頁 > 數據處理 > 大數據都學習哪些預言

大數據都學習哪些預言

發布時間:2023-11-28 08:41:53

『壹』 大數據專業需要學習什麼語言

1、大數據專業一般學習的語言都是Python。Python是一種跨平台的計算機程序設計語言。 是一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言。最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越多被用於獨立的、大型項目的開發。尤其是在大數據領域,使用越來越廣泛。

2、也可以學習JAVA,java語言是現階段全球范圍使用最廣泛的語言,在大數據領域也可以使用。

3、也可以使用R語言。R是用於統計分析、繪圖的語言和操作環境。R是屬於GNU系統的一個自由、免費、源代碼開放的軟體,它是一個用於統計計算和統計制圖的優秀工具。

4、希望對你有幫助。

『貳』 大數據需要掌握哪些技能

大數據技術體系龐大,包括的知識較多

1、學習大數據首先要學習Java基礎

Java是大數據學習需要的編程語言基礎,因為大數據的開發基於常用的高級語言。而且不論是學hadoop,

2、學習大數據必須學習大數據核心知識

Hadoop生態系統;HDFS技術;HBASE技術;Sqoop使用流程;數據倉庫工具HIVE;大數據離線分析Spark、Python語言;數據實時分析Storm;消息訂閱分發系統Kafka等。

3、學習大數據需要具備的能力

數學知識,數學知識是數據分析師的基礎知識。對於數據分析師,了解一些描述統計相關的內容,需要有一定公式計算能力,了解常用統計模型演算法。而對於數據挖掘工程師來說,各類演算法也需要熟練使用,對數學的要求是最高的。

4、學習大數據可以應用的領域

大數據技術可以應用在各個領域,比如公安大數據、交通大數據、醫療大數據、就業大數據、環境大數據、圖像大數據、視頻大數據等等,應用范圍非常廣泛。

『叄』 大數據專業主要學習什麼語言

大數據是近五年興起的行業,發展迅速,很多技術經過這些年的迭代也變得比較成熟了,同時新的東西也不斷涌現,想要保持自己競爭力的唯一辦法就是不斷學習。但是,大數據需要學習什麼?1 思維導圖下面的是我之前整理的一張思維導圖,內容分成幾大塊,包括了分布式計算與查詢,分布式調度與管理,持久化存儲,大數據常用的編程語言等等內容,每個大類下有很多的開源工具。2大數據需要的語言Javajava可以說是大數據最基礎的編程語言,據我這些年的經驗,我接觸的很大一部分的大數據開發都是從Jave Web開發轉崗過來的(當然也不是絕對我甚至見過產品轉崗大數據開發的,逆了個天)。一是因為大數據的本質無非就是海量數據的計算,查詢與存儲,後台開發很容易接觸到大數據量存取的應用場景二就是java語言本事了,天然的優勢,因為大數據的組件很多都是用java開發的像HDFS,Yarn,Hbase,MR,Zookeeper等等,想要深入學習,填上生產環境中踩到的各種坑,必須得先學會java然後去啃源碼。說到啃源碼順便說一句,開始的時候肯定是會很難,需要對組件本身和開發語言都有比較深入的理解,熟能生巧慢慢來,等你過了這個階段,習慣了看源碼解決問題的時候你會發現源碼真香。Scalascala和java很相似都是在jvm運行的語言,在開發過程中是可以無縫互相調用的。Scala在大數據領域的影響力大部分都是來自社區中的明星Spark和kafka,這兩個東西大家應該都知道(後面我會有文章多維度介紹它們),它們的強勢發展直接帶動了Scala在這個領域的流行。Python和Shellshell應該不用過多的介紹非常的常用,屬於程序猿必備的通用技能。python更多的是用在數據挖掘領域以及寫一些復雜的且shell難以實現的日常腳本。3分布式計算什麼是分布式計算?分布式計算研究的是如何把一個需要非常巨大的計算能力才能解決的問題分成許多小的部分,然後把這些部分分配給許多伺服器進行處理,最後把這些計算結果綜合起來得到最終的結果。舉個栗子,就像是組長把一個大項目拆分,讓組員每個人開發一部分,最後將所有人代碼merge,大項目完成。聽起來好像很簡單,但是真正參與過大項目開發的人一定知道中間涉及的內容可不少。分布式計算目前流行的工具有:離線工具Spark,MapRece等實時工具Spark Streaming,Storm,Flink等這幾個東西的區別和各自的應用場景我們之後再聊。4分布式存儲傳統的網路存儲系統採用的是集中的存儲伺服器存放所有數據,單台存儲伺服器的io能力是有限的,這成為了系統性能的瓶頸,同時伺服器的可靠性和安全性也不能滿足需求,尤其是大規模的存儲應用。分布式存儲系統,是將數據分散存儲在多台獨立的設備上。採用的是可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。上圖是hdfs的存儲架構圖,hdfs作為分布式文件系統,兼備了可靠性和擴展性,數據存儲3份在不同機器上(兩份存在同一機架,一份存在其他機架)保證數據不丟失。由NameNode統一管理元數據,可以任意擴展集群。主流的分布式資料庫有很多hbase,mongoDB,GreenPlum,redis等等等等,沒有孰好孰壞之分,只有合不合適,每個資料庫的應用場景都不同,其實直接比較是沒有意義的,後續我也會有文章一個個講解它們的應用場景原理架構等。5分布式調度與管理現在人們好像都很熱衷於談"去中心化",也許是區塊鏈帶起的這個潮流。但是"中心化"在大數據領域還是很重要的,至少目前來說是的。分布式的集群管理需要有個組件去分配調度資源給各個節點,這個東西叫yarn;需要有個組件來解決在分布式環境下"鎖"的問題,這個東西叫zookeeper;需要有個組件來記錄任務的依賴關系並定時調度任務,這個東西叫azkaban。當然這些「東西」並不是唯一的,其實都是有很多替代品的,本文只舉了幾個比較常用的例子。

『肆』 大數據應該學習什麼語言

大數據專業語言主要以java、python為主,課程知識點多,難度大,而且有本科學歷要求!

大數據學習內容主要有:

①JavaSE核心技術;

②Hadoop平台核心技術、Hive開發、HBase開發;

③Spark相關技術、Scala基本編程;

④掌握Python基本使用、核心庫的使用、Python爬蟲、簡單數據分析;理解Python機器學習;

⑤大數據項目開發實戰,大數據系統管理優化等。

你可以考察對比一下南京課工場、北大青鳥、中博軟體學院等開設有大數據專業的學校。祝你學有所成,望採納。

北大青鳥中博軟體學院大數據課堂實拍

『伍』 大數據專業主要學習什麼語言

大數據專業需要學習哪些技術:


一、編程語言


想要學習大數據技術,首先要掌握一門基礎編程語言。Java編程語言的使用率最廣泛,因此就業機會會更多一些,而Python編程語言正在高速推廣應用中,同時學習Python的就業方向會更多一些。


二、Linux


學習大數據一定要掌握一定的Linux技術知識,不要求技術水平達到就業的層次,但是一定要掌握Linux系統的基本操作。能夠處理在實際工作中遇到的相關問題。


三、SQL


大數據的特點就是數據量非常大,因此大數據的核心之一就是數據倉儲相關工作。因此大數據工作對於資料庫要求是非常的高。甚至很多公司單獨設置資料庫開發工程師。


四、Hadoop


Hadoop是分布式系統的基礎框架,以一種可靠、高效、可伸縮的方式進行數據處理。具有高可靠性、高擴展性、高效性、高容錯性、低成本等優點,從事大數據相關工作Hadoop是必學的知識點。


五、Spark


Spark是專門為大規模數據處理而設計的快速通用的計算引擎。可以用它來完成各種各樣的運算,包括SQL查詢、文本處理、機器學習等等。


六、機器學習


機器學習是目前人工智慧領域的核心技術,在大數據專業中也有非常廣泛的引用。在演算法和自動化的發展過程中,機器學習扮演著非常重要的角色。可以大大拓展自己的就業方向。

互聯網行業里大數據和雲智能是當下最重要板塊,企業藉助大數據技術不僅能避免企業發展時會面臨的各種風險,更能解決發展過程中所遇到的種種難題。近些年來大數據的公司越來越多,但是大數據人才需求還存在著很大缺口,為了響應市場需求未來我國還會需要更多的大數據人才。網路、阿里、京東等互聯網高企依仗自身的強大技術和數據優勢,均已將大數據作為企業的重要戰略部署。


大數據專業未來就業方向解析:


一、ETL研發


企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL.


二、Hadoop開發


隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。


三、可視化工具開發


可視化開發就是在可視化工具提供的圖形用戶界面上,通過操作界面元素,有可視化開發工具自動生成相關應用軟體,輕松跨越多個資源和層次連接所有數據。過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。


四、信息架構開發


大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。

五、數據倉庫研究


為方便企業決策,出於分析性報告和決策支持的目的而創建的數據倉庫研究崗位是一種所有類型數據的戰略集合。為企業提供業務智能服務,指導業務流程改進和監視時間、成本、質量和控制。


六、OLAP開發


OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。


七、數據科學研究


數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。


八、數據預測分析


營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。


九、企業數據管理


企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗和規范化,將數據導入數據倉庫中,成為一個可用的版本。


十、數據安全研究


數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。


大數據的特點就是能夠靈活、快速、高效的響應各種市場需求。大數據的受眾領域非常廣泛,不僅改善著人們的社會活動和生活方式,運用好大數據技術還能為企業帶了更多的商機和商業價值。大數據不僅與IT行業關系密切,眾多行業都已經開始了大數據運營的布局,例如金融、醫療、政府等。撼地大數據就是以大數據技術為基礎研發出了屬於自己的大數據數智招商系統,為產業招商打造了一個精準招商服務雲平台,極大的改善了現階段產業園招商難的窘境。

『陸』 大數據分析需要學習什麼知識呀

數據分析所需要學習掌握的知識:

對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。

而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。

對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。

數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。

當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。

對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。

對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。

對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。

數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。

對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。

數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。

對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。

閱讀全文

與大數據都學習哪些預言相關的資料

熱點內容
中國電子信息類有哪些專業 瀏覽:155
淘寶的裝修市場在哪裡 瀏覽:428
英雄殺微信小程序抽至寶多少錢 瀏覽:981
汽車二手車市場哪個好 瀏覽:617
房產交易網簽需要多久 瀏覽:999
山東省哪裡有最大的羊市場 瀏覽:843
哪裡學宏程序 瀏覽:697
知網節頁面可以查到作者哪些信息 瀏覽:708
代理合同無效如何起訴 瀏覽:377
團隊中如何開拓市場 瀏覽:206
農產品如何做網店 瀏覽:582
成都摩配市場租金多少 瀏覽:811
3d技術發展的怎麼樣了 瀏覽:150
預測數據集怎麼選 瀏覽:417
雷克薩斯的混動技術好在哪裡 瀏覽:286
什麼是資源稅非應稅產品 瀏覽:690
市場上哪裡能買到牛肥肉 瀏覽:76
無需技術職業有哪些 瀏覽:298
市場上的青椒是怎麼種的 瀏覽:799
手游代理如何拉人 瀏覽:879