導航:首頁 > 數據處理 > 截面數據有哪些回歸方法

截面數據有哪些回歸方法

發布時間:2023-11-02 05:08:44

⑴ 截面數據回歸分析實例

應該是用 ARIMAX來做,先檢驗協整燃歷空,如果協整繼續做,看協相關圖爛困,寫出皮瞎模型表達式,再利用ARMA擬合。應該是這樣

⑵ 截面數據怎麼補

l.varname表示滯後一階,l2.varname表示滯後二階,以此類推
下面是更多方法:
(一)個案剔除法
最常見、最簡單的處理缺失數據的方法是用個案剔除法也是很多統計軟體(如SPSS和SAS)默認的缺失值處理方法。在這種方法中如果任何一個變數含有缺失數據的話,就把相對應的個案從分析中剔除。如果缺失值所佔比例比較小的話,這一方法十分有效。至於具體多大的缺失比例算是「小」比例,專家們意見也存在較大的差距。有學者認為應在5%以下,也有學者認為20%以下即可。然而,這種方法卻有很大的局限性。它是以減少樣本量來換取信息的完備,會造成資源的大量浪費,丟棄了大量隱藏在這些對象中的信息。在樣本量較小的情況下,刪除少量對象就足以嚴重影響到數據的客觀性和結果的正確性。因此,當缺失數據所佔比例較大,特別是當缺數據非隨機分布時,這種方法可能導致數據發生偏離,從而得出錯誤的結論。
(二)均值替換法
將變數的屬性分為數值型和非數值型來分別進行處理。如果缺失值是數值型的,就根據該變數在其他所有對象的取值的平均值來填充該缺失的變數值;如果缺失值是非數值型的,就根據統計學中的眾數原理,用該變數在其他所有對象的取值次數最多的值來補齊該缺失的變數值。但這種方法會產生有偏估計,所以並不被推崇。均值替換法也是一種簡便、快速的缺失數據處理方法。使用均值替換法插補缺失數據,對該變數的均值估計不會產生影響。但這種方法是建立在完全隨機缺失(MCAR)的假設之上的,而且會造成變數的方差和標准差變小。
(三)熱卡填充法
對於一個包含缺失值的變數,熱卡填充法在資料庫中找到一個與它最相似的對象,然後用這個相似對象的值來進行填充。不同的問題可能會選用不同的標准來對相似進行判定。最常見的是使用相關系數矩陣來確定哪個變數(如變數Y)與缺失值所在變數(如變數X)最相關。然後把所有個案按Y的取值大小進行排序。那麼變數X的缺失值就可以用排在缺失值前的那個個案的數據來代替了。與均值替換法相比,利用熱卡填充法插補數據後,其變數的標准差與插補前比較接近。但在回歸方程中,使用熱卡填充法容易使得回歸方程的誤差增大,參數估計變得不穩定,而且這種方法使用不便,比較耗時。
(四)回歸替換法
回歸替換法首先需要選擇若干個預測缺失值的自變數,然後建立回歸方程估計缺失值,即用缺失數據的條件期望值對缺失值進行替換。與前述幾種插補方法比較,該方法利用了資料庫中盡量多的信息,而且一些統計軟體(如Stata)也已經能夠直接執行該功能。但該方法也有諸多弊端,第一,這雖然是一個無偏估計,但是卻容易忽視隨機誤差,低估標准差和其他未知性質的測量值,而且這一問題會隨著缺失信息的增多而變得更加嚴重。第二,研究者必須假設存在缺失值所在的變數與其他變數存在線性關系,很多時候這種關系是不存在的。
(五)多重替代法
首先,多重估算技術用一系列可能的值來替換每一個缺失值,以反映被替換的缺失數據的不確定性。然後,用標準的統計分析過程對多次替換後產生的若干個數據集進行分析。最後,把來自於各個數據集的統計結果進行綜合,得到總體參數的估計值。由於多重估算技術並不是用單一的值來替換缺失值,而是試圖產生缺失值的一個隨機樣本,這種方法反映出了由於數據缺失而導致的不確定性,能夠產生更加有效的統計推斷。結合這種方法,研究者可以比較容易地,在不舍棄任何數據的情況下對缺失數據的未知性質進行推斷。

⑶ 面板數據分析方法總結

面板數據分析方法總結

橫截面的異方差與序列的自相關性是運用面板數據模型時可能遇到的最為常見的問題,此時運用OLS可能會產生結果失真,因此為了消除影響,對我國東、中、西部地區的分析將採用不相關回歸方法( SeeminglyUnrelated Regression, SUR)來估計方程。而對於全國范圍內的估計來說,由於橫截面個數大於時序個數,所以採用截面加權估計法(Cross SectionWeights, CSW) 。
一般而言,面板數據可用固定效應(fixed effect) 和隨機效應(random effect) 估計方法,即如果選擇固定效應模型,則利用虛擬變數最小二乘法(LSDV) 進行估計;如果選擇隨機效應模型,則利用可行的廣義最小二乘法(FGLS) 進行估計(Greene ,2000) 。它可以極大限度地利用面板數據的優點,盡量減少估計誤差。至於究竟是採用固定效應還是隨機效應,則要看Hausman 檢驗的結果。
單位根檢驗:在進行時間序列的分析時,研究者為了避免偽回歸問題,會通過單位根檢驗對數據平穩性進行判斷。但對於面板數據則較少關注。隨著面板數據在經濟領域應用,對面板數據單位根的檢驗也逐漸引起重視。面板數據單位根的檢驗主要有Levin、Lin 和Chu 方法(LLC 檢驗) (1992 ,1993 ,2002) 、Im、Pesaran 和Shin 方法( IPS 檢驗) (1995 ,1997) 、Maddala 和Wu 方法(MW檢驗) (1999) 等。
協整檢驗:協整檢驗是考察變數間長期均衡關系的方法。在進行了各變數的單位根檢驗後,如果各變數間都是同階單整,那麼就可以進行協整檢驗了。面板協整檢驗理論目前還不成熟,仍然在不斷的發展過程中,目前的方法主要有:(1)Kao(1999)、Kao and Chiang(2000)利用推廣的DF和ADF檢驗提出了檢驗面板協整的方法,這種方法零假設是沒有協整關系,並且利用靜態面板回歸的殘差來構建統計量。(2)Pedron(i1999)在零假設是在動態多元面板回歸中沒有協整關系的條件下給出了七種基於殘差的面板協整檢驗方法。和Kao的方法不同的是,Pedroni的檢驗方法允許異質面板的存在。(3)Larsson et a(l2001)發展了基於Johansen(1995)向量自回歸的似然檢驗的面板協整檢驗方法。這種檢驗的方法是檢驗變數存在共同的協整的秩。
一般的順序是:先檢驗變數的平穩性,當變數均為同階單整變數時,再採用協整檢驗以判別變數間是否存在長期均衡關系。如果變數間存在長期均衡的關系,我們可以通過誤差修正模型(ECM) 來檢驗變數間的長期因果關系;如變數間不存在協整關系,我們將對變數進行差分,然後通過向量自回歸模型(VAR),檢驗變數間的短期因果關系。

閱讀全文

與截面數據有哪些回歸方法相關的資料

熱點內容
蘇州哪裡有核心技術 瀏覽:452
襄陽職業技術學院附近有什麼 瀏覽:881
nba有哪些令人驚艷的數據 瀏覽:665
纖伏代理怎麼樣 瀏覽:373
如何查看自己定向傭金產品 瀏覽:122
簡歷配偶信息怎麼寫 瀏覽:564
商貿代理怎麼做 瀏覽:63
hmi模具加工有哪些技術 瀏覽:55
完美蘆薈膠怎麼代理 瀏覽:439
合約交易避開8點能省多少手續費 瀏覽:448
人類目前缺什麼技術 瀏覽:431
警察與程序員哪個好 瀏覽:708
夢見臨時市場在哪裡 瀏覽:420
交易所流水是什麼 瀏覽:153
小程序代理怎麼找客 瀏覽:915
學電子技術專業的筆記本要什麼配置 瀏覽:809
特效生發產品有哪些 瀏覽:725
國產哪些技術不如國外 瀏覽:851
朝鮮生產什麼農產品 瀏覽:193
掛什麼號可以查到違章信息 瀏覽:435