❶ 聚類分析中常見的數據類型有哪些
聚類分析,又稱群分析,即建立一種分類方法:將一批樣品或者指標(變數),按照它們在性質上的親疏、相似程度進行分類。
按其聚類的方法,數據類型有以下六種:
①系統聚類分析:開始每個對象自成一類,然後將最相似的兩類合並,合並過後重新計算新類與其它類的距離或相近性程度。這一過程一直繼續下去直到所有的對象歸為一類為止
②調優法(動態聚類法):首先對n個對象進行初步分類,然後根據分類的損失函數盡可能小的原則對其進行調整,直到分類合理為止;
③最優分割法(有序樣品聚類法):開始將所有樣品看成一類,然後根據某種最優准則將他們分割為二類、三類,一直分割到所需要的K類為止;
④模糊聚類法:利用模糊集理論來處理分類的問題,他將經濟領域中最有模糊特徵的兩態數據或多態數據具有明顯的分類效果;
⑤圖論據類法:利用圖論中最小支撐樹的概念來處理分類問題;
⑥聚類預報法:聚類預報彌補了回歸分析和判別分析的不足。
按分類對象的不同:聚類分為R型和Q型