導航:首頁 > 數據處理 > 如何處理資料庫高並發

如何處理資料庫高並發

發布時間:2023-09-27 14:46:23

A. 如何解決高並發問題

使用高性能的伺服器、高性能的資料庫、高效率的編程語言、還有高性能的Web容器,(對架構分層+負載均衡+集群)這幾個解決思路在一定程度上意味著更大的投入。

1、高並發:在同一個時間點,有大量的客戶來訪問我們的網站,如果訪問量過大,就可能造成網站癱瘓。

2、高流量:當網站大後,有大量的圖片,視頻,這樣就會對流量要求高,需要更多更大的帶寬。

3、大存儲:可能對數據保存和查詢出現問題。

解決方案:

1、提高硬體能力、增加系統伺服器。(當伺服器增加到某個程度的時候系統所能提供的並發訪問量幾乎不變,所以不能根本解決問題)

2、本地緩存:本地可以使用JDK自帶的Map、Guava Cache.分布式緩存:Redis、Memcache.本地緩存不適用於提高系統並發量,一般是用處用在程序中。

Spiring把已經初始過的變數放在一個Map中,下次再要使用這個變數的時候,先判斷Map中有沒有,這也就是系統中常見的單例模式的實現。

B. 如何處理資料庫並發問題

想要知道如何處理數據並發,自然需要先了解數據並發。

什麼是數據並發操作呢?
就是同一時間內,不同的線程同時對一條數據進行讀寫操作。

在互聯網時代,一個系統常常有很多人在使用,因此就可能出現高並發的現象,也就是不同的用戶同時對一條數據進行操作,如果沒有有效的處理,自然就會出現數據的異常。而最常見的一種數據並發的場景就是電商中的秒殺,成千上萬個用戶對在極端的時間內,搶購一個商品。針對這種場景,商品的庫存就是一個需要控制的數據,而多個用戶對在同一時間對庫存進行重寫,一個不小心就可能出現超賣的情況。

針對這種情況,我們如何有效的處理數據並發呢?

第一種方案、資料庫鎖
從鎖的基本屬性來說,可以分為兩種:一種是共享鎖(S),一種是排它鎖(X)。在MySQL的資料庫中,是有四種隔離級別的,會在讀寫的時候,自動的使用這兩種鎖,防止數據出現混亂。

這四種隔離級別分別是:

讀未提交(Read Uncommitted)
讀提交(Read Committed)
可重復讀(Repeated Read)
串列化(Serializable)
當然,不同的隔離級別,效率也是不同的,對於數據的一致性保證也就有不同的結果。而這些可能出現的又有哪些呢?

臟讀(dirty read)

當事務與事務之間沒有任何隔離的時候,就可能會出現臟讀。例如:商家想看看所有的訂單有哪些,這時,用戶A提交了一個訂單,但事務還沒提交,商家卻看到了這個訂單。而這時就會出現一種問題,當商家去操作這個訂單時,可能用戶A的訂單由於部分問題,導致數據回滾,事務沒有提交,這時商家的操作就會失去目標。

不可重復讀(unrepeatable read)

一個事務中,兩次讀操作出來的同一條數據值不同,就是不可重復讀。

例如:我們有一個事務A,需要去查詢一下商品庫存,然後做扣減,這時,事務B操作了這個商品,扣減了一部分庫存,當事務A再次去查詢商品庫存的時候,發現這一次的結果和上次不同了,這就是不可重復讀。

幻讀(phantom problem)

一個事務中,兩次讀操作出來的結果集不同,就是幻讀。

例如:一個事務A,去查詢現在已經支付的訂單有哪些,得到了一個結果集。這時,事務B新提交了一個訂單,當事務A再次去查詢時,就會出現,兩次得到的結果集不同的情況,也就是幻讀了。

那針對這些結果,不同的隔離級別可以干什麼呢?

「讀未提(Read Uncommitted)」能預防啥?啥都預防不了。

「讀提交(Read Committed)」能預防啥?使用「快照讀(Snapshot Read)」方式,避免「臟讀」,但是可能出現「不可重復讀」和「幻讀」。

「可重復讀(Repeated Red)」能預防啥?使用「快照讀(Snapshot Read)」方式,鎖住被讀取記錄,避免出現「臟讀」、「不可重復讀」,但是可能出現「幻讀」。

「串列化(Serializable)」能預防啥?有效避免「臟讀」、「不可重復讀」、「幻讀」,不過運行效率奇差。

好了,鎖說完了,但是,我們的資料庫鎖,並不能有效的解決並發的問題,只是盡可能保證數據的一致性,當並發量特別大時,資料庫還是容易扛不住。那解決數據並發的另一個手段就是,盡可能的提高處理的速度。

因為數據的IO要提升難度比較大,那麼通過其他的方式,對數據進行處理,減少資料庫的IO,就是提高並發能力的有效手段了。

最有效的一種方式就是:緩存
想要減少並發出現的概率,那麼讀寫的效率越高,讀寫的執行時間越短,自然數據並發的可能性就變小了,並發性能也有提高了。

還是用剛才的秒殺舉例,我們為的就是保證庫存的數據不出錯,賣出一個商品,減一個庫存,那麼,我們就可以將庫存放在內存中進行處理。這樣,就能夠保證庫存有序的及時扣減,並且不出現問題。這樣,我們的資料庫的寫操作也變少了,執行效率也就大大提高了。

當然,常用的分布式緩存方式有:Redis和Memcache,Redis可以持久化到硬碟,而Memcache不行,應該怎麼選擇,就看具體的使用場景了。

當然,緩存畢竟使用的范圍有限,很多的數據我們還是必須持久化到硬碟中,那我們就需要提高資料庫的IO能力,這樣避免一個線程執行時間太長,造成線程的阻塞。

那麼,讀寫分離就是另一種有效的方式了
當我們的寫成為了瓶頸的時候,讀寫分離就是一種可以選擇的方式了。

我們的讀庫就只需要執行讀,寫庫就只需要執行寫,把讀的壓力從主庫中分離出去,讓主庫的資源只是用來保證寫的效率,從而提高寫操作的性能。

閱讀全文

與如何處理資料庫高並發相關的資料

熱點內容
db2數據刪除了怎麼恢復 瀏覽:416
如何使用速裁程序 瀏覽:724
百草集什麼產品好 瀏覽:749
手機用無線網和數據網路哪個省電 瀏覽:713
三星手機數據線怎麼連接電腦 瀏覽:854
華為轉蘋果的數據在哪裡 瀏覽:163
中國知網資料庫有哪些導航 瀏覽:801
我的世界如何用命令創建交易 瀏覽:798
怎麼代理國開招生 瀏覽:618
玩吃雞技術為什麼會變強 瀏覽:755
足球花哨小技術怎麼練 瀏覽:52
木工建設小程序要多少錢 瀏覽:490
打點棒數據怎麼傳到電腦 瀏覽:563
軟體技術外包服務怎麼收費 瀏覽:98
怎麼給毛線做代理 瀏覽:225
招標技術培訓該怎麼寫 瀏覽:385
三生賣的什麼產品 瀏覽:278
葯品生產技術專科能做什麼 瀏覽:224
數據中心如何增加埠密度 瀏覽:162
沙河市場在哪個鎮 瀏覽:203