導航:首頁 > 數據處理 > 大數據在證券行業有哪些應用

大數據在證券行業有哪些應用

發布時間:2023-09-20 07:04:38

大數據在金融領域的應用主要包括

主要包括以下方面:
1. 客戶的管理
金融機構內部也擁有大量具有價值的數據,如業務訂單數據、用戶屬性數據、用戶收入數據、客戶查詢數據、理財產品交易數據、用戶行為等數據,這些數據可以通過用戶賬號的打通,建立用戶標簽體系。在此基礎之上,結合風險偏好數據、客戶職業、愛好、消費方式等偏好數據,利用機器學習演算法來對客戶進行分類,並利用已有數據標簽和外部數據標簽對用戶進行畫像。進而針對不同類型的客戶提供不同的產品和服務策略,這樣可以提高客戶滲透力、客戶轉化率和產品轉化率。也就是說,通過大數據應用,金融機構可以逐漸實現完全個性化客戶服務的目標。
2. 產品的管理
通過大數據分析平台,金融機構能夠獲取客戶的反饋信息,及時了解、獲取和把握客戶的需求,通過對數據進行深入分析,可以對產品進行更加合理的設置。通過大數據,金融機構可以快速高效地分析產品的功能特徵和喜歡的狀態,產品的價值,客戶的喜好原因,產品的生命周期,產品的利潤,產品的客戶群等。如果處理得好,可以做到把適當的產品送到需要該產品的客戶手上,這是客戶關系管理中一個重要的環節。
3. 營銷的管理
藉助大數據分析平台,通過對形式多樣的用戶數據(基本信息數據、財富信息數據、教育數據、消費數據、瀏覽數據、購買路徑、客戶的微博、客戶的微信、客戶的購買行為)進行挖掘、追蹤、分析,以提升精準營銷水平。
拓展資料:
特徵
1.網路化的呈現。在大數據金融時代,大量的金融產品和服務通過網路來展現,包括固定網路和移動網路。
2.基於大數據的風險管理理念和工具。在大數據金融時代,風險管理理念和工具也將調整。
3.信息不對稱性大大降低。在大數據金融時代,金融產品和服務的消費者和提供者之間信息不對稱程度大大降低。
4.高效率性。大數據金融無疑是高效率的。許多流程和動作都是在線上發起和完成,有些動作是自動實現。
5.金融企業服務邊界擴大。首先,就單個金融企業而言,其最合適經營規模擴大了。由於效率提升,其經營成本必隨之降低。金融企業的成本曲線形態也會發生變化。
6.產品的可控性、可受性。通過網路化呈現的金融產品,對消費者而言,是可控、可受的。

② 大數據技術在金融行業中的典型應用

大數據技術在金融行業中的典型應用
近年來,我國金融科技快速發展,在多個領域已經走在世界前列。大數據、人工智慧、雲計算、移動互聯網等技術與金融業務深度融合,大大推動了我國金融業轉型升級,助力金融更好地服務實體經濟,有效促進了金融業整體發展。在這一發展過程中,又以大數據技術發展最為成熟、應用最為廣泛。從發展特點和趨勢來看,「金融雲」快速建設落地奠定了金融大數據的應用基礎,金融數據與其他跨領域數據的融合應用不斷強化,人工智慧正在成為金融大數據應用的新方向,金融行業數據的整合、共享和開放正在成為趨勢,給金融行業帶來了新的發展機遇和巨大的發展動力。
大數據在金融行業的典型應用場景
大數據涉及的行業過於廣泛,除金融外,還包括政治、教育、傳媒、醫學、商業、工農業、互聯網等多個方面,各行業對大數據的定義目前尚未統一。大數據的特點可歸納為「4V」。第一,數據體量大(Volume),海量性也許是與大數據最相關的特徵。第二,數據類型繁多(Variety),大數據既包括以事務為代表的傳統結構化數據,還包括以網頁為代表的半結構化數據和以視頻、語音信息為代表的非結構化數據。第三,價值密度低(Value),大數據的體量巨大,但數據中的價值密度卻很低。比如幾個小時甚至幾天的監控視頻中,有價值的線索或許只有幾秒鍾。第四,處理速度快(Velocity),大數據要求快速處理,時效性強,要進行實時或准實時的處理。
金融行業一直較為重視大數據技術的發展。相比常規商業分析手段,大數據可以使業務決策具有前瞻性,讓企業戰略的制定過程更加理性化,實現生產資源優化分配,依據市場變化迅速調整業務策略,提高用戶體驗以及資金周轉率,降低庫存積壓的風險,從而獲取更高的利潤。
當前,大數據在金融行業典型的應用場景有以下幾個方面:
在銀行業的應用主要表現在兩個方面:一是信貸風險評估。以往銀行對企業客戶的違約風險評估多基於過往的信貸數據和交易數據等靜態數據,內外部數據資源整合後的大數據可提供前瞻性預測。二是供應鏈金融。利用大數據技術,銀行可以根據企業之間的投資、控股、借貸、擔保及股東和法人之間的關系,形成企業之間的關系圖譜,利於企業分析及風險控制。
在證券行業的應用主要表現為:一是股市行情預測。大數據可以有效拓寬證券企業量化投資數據維度,幫助企業更精準地了解市場行情,通過構建更多元的量化因子,投研模型會更加完善。二是股價預測。大數據技術通過收集並分析社交網路如微博、朋友圈、專業論壇等渠道上的結構化和非結構化數據,形成市場主觀判斷因素和投資者情緒打分,從而量化股價中人為因素的變化預期。三是智能投資顧問。智能投資顧問業務提供線上投資顧問服務,其基於客戶的風險偏好、交易行為等個性化數據,依靠大數據量化模型,為客戶提供低門檻、低費率的個性化財富管理方案。
在互聯網金融行業的應用,一是精準營銷。大數據通過用戶多維度畫像,對客戶偏好進行分類篩選,從而達到精準營銷的目的。二是消費信貸。基於大數據的自動評分模型、自動審批系統和催收系統可降低消費信貸業務違約風險。
金融大數據的典型案例分析
為實時接收電子渠道交易數據,整合銀行內系統業務數據。中國交通銀行通過規則欲實現快速建模、實時告警與在線智能監控報表等功能,以達到實時接收官網業務數據,整合客戶信息、設備畫像、位置信息、官網交易日誌、瀏覽記錄等數據的目的。
該系統通過為交通銀行卡中心構建反作弊模型、實時計算、實時決策系統,幫助擁有海量歷史數據,日均增長超過兩千萬條日誌流水的銀行卡中心,形成電子渠道實時反欺詐交易監控能力。利用分布式實時數據採集技術和實時決策引擎,幫助信用卡中心高效整合多系統業務數據,處理海量高並發線上行為數據,識別惡意用戶和欺詐行為,並實時預警和處置;通過引入機器學習框架,對少量數據進行分析、挖掘構建並周期性更新反欺詐規則和反欺詐模型。
系統上線後,該銀行迅速監控電子渠道產生的虛假賬號、偽裝賬號、異常登錄、頻繁登錄等新型風險和欺詐行為;系統穩定運行,日均處理逾兩千萬條日誌流水、實時識別出近萬筆風險行為並進行預警。數據接入、計算報警、案件調查的整體處理時間從數小時降低至秒級,監測時效提升近3000倍,上線3個月已幫助卡中心挽回數百萬元的風險損失。
網路的搜索技術正在全面注入網路金融。網路金融使用的梯度增強決策樹演算法可以分析大數據高維特點,在知識分析、匯總、聚合、提煉等多個方面有其獨到之處,其深度學習能力利用數據挖掘演算法能夠較好地解決大數據價值密度低等問題。網路「磐石」系統基於每日100億次搜索行為,通過200多個維度為8.6億賬號精確畫像,高效劃分人群,能夠為銀行、互聯網金融機構提供身份識別、反欺詐、信息檢驗、信用分級等服務。該系統累計為網路內部信貸業務攔截數十萬欺詐用戶,攔截數十億不良資產、減少數百萬人力成本,累計合作近500家社會金融機構,幫助其提升了整體風險防控水平。
金融大數據應用面臨的挑戰及對策
大數據技術為金融行業帶來了裂變式的創新活力,其應用潛力有目共睹,但在數據應用管理、業務場景融合、標准統一、頂層設計等方面存在的瓶頸也有待突破。
一是數據資產管理水平仍待提高。主要體現在數據質量不高、獲取方式單一、數據系統分散等方面。
二是應用技術和業務探索仍需突破。主要體現在金融機構原有的數據系統架構相對復雜,涉及的系統平台和供應商較多,實現大數據應用的技術改造難度很大。同時,金融行業的大數據分析應用模型仍處於起步階段,成熟案例和解決方案仍相對較少,需要投入大量的時間和成本進行調研和試錯。系統誤判率相對較高。
三是行業標准和安全規范仍待完善。金融大數據缺乏統一的存儲管理標准和互通共享平台,對個人隱私的保護上還未形成可信的安全機制。
四是頂層設計和扶持政策還需強化。體現在金融機構間的數據壁壘較為明顯,各自為戰問題突出,缺乏有效的整合協同。同時,行業應用缺乏整體性規劃,分散、臨時、應激等特點突出,信息價值開發仍有較大潛力。
以上問題,一方面需要國家出台促進金融大數據發展的產業規劃和扶持政策,同時,也需要行業分階段推動金融數據開放、共享和統一平台建設,強化行業標准和安全規范。只有這樣,大數據技術才能在金融行業中穩步應用發展,不斷推動金融行業的發展提升。

閱讀全文

與大數據在證券行業有哪些應用相關的資料

熱點內容
大數據需要什麼學科 瀏覽:442
怎麼查貨代是一級代理嗎 瀏覽:319
又木黑糖薑茶怎麼代理 瀏覽:574
文科和技術工哪個好 瀏覽:164
牛市怎麼交易最好 瀏覽:444
關於交通安全的信息有哪些 瀏覽:279
代理微商怎麼辦理 瀏覽:239
財務代理行業如何報稅 瀏覽:48
閱讀課外書的時候需要哪些信息呢 瀏覽:97
商品房契稅交多久才能交易 瀏覽:148
交易貓如何將錢提出來 瀏覽:910
只買漲跌的是什麼交易 瀏覽:794
羊用什麼產品 瀏覽:905
奶粉代理哪個品牌最好 瀏覽:967
技術類賬號有哪些 瀏覽:111
從哪裡能查出車輛凍結信息 瀏覽:112
c管家安裝需要在什麼程序上 瀏覽:353
蘋果手機怎麼設置國外代理 瀏覽:387
2k14如何交易科比 瀏覽:221
數控操機怎麼在程序里找刀 瀏覽:577