A. 關於大數據的特徵以下理解正確的是什麼
大數據技術(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
特點:
1.數據量大;
2.數據類型多;
3.數據處理實時性強;
4.數據真實性。
意義:大數據的意義在於通過對大量數據進行分析從而對核心價值進行預測。
缺陷:對處理能力要求高,存在隱私安全問題。
B. 什麼是「大數據」,如何理解「大數據」
你好,大數據是指巨量的數據,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
當下,大數據技術作為新興技術被許多互聯網大廠所需,以華為為例。
1、華為雲推出大數據稽核方案解決偷逃費
很多朋友可能發現,部分省界收費站變少而ETC通道在增加,高速公路的出行體驗比以前更加順暢。然而,在公眾體驗節省費用、便捷通行等利好的同時,高速公路的管理運營單位卻飽受新情況的困擾。
部分車主偷逃費方式多樣化,包括換卡逃費、車頭掛車分離逃費、倒換電子標簽、ETC車道跟車逃費等。同時偷逃費行為向專業化、團伙化演變,給高速運營單位帶來大量經濟損失和嚴峻挑戰。
以華為為例,華為給1-3年經驗的大數據開發工程師開到了高達4萬的月薪,在其他大廠的招聘中30k-60k的大數據開發工程師,也只要1-3年工作經驗,可以說大數據、雲計算仍是當下的紅利崗位。
希望我的回答對你有所幫助!
C. 如何理解大數據
1、我理解的大數據就是:數據量大(Volume)、數據種類多樣(Variety)、 要求實時性強(Velocity) 。對它關注也是因為它蘊藏的商業價值大(Value)。也是大數據的4V特性。符合這些特性的,叫大數據。
2、對它關注一個原因就它的大價值,比方ebay,建立的大數據分析平台可以准確分析用戶的購物行為。通過對顧客的行為進行跟蹤、對搜索關鍵字廣告的投入產出進行衡量,優化後eBay 產品銷售的廣告費降低了99%,頂級賣家占總銷售額的百分比卻上升至32%。就大數據價值這一塊,例子很多,詳情可以再自己查查。
再一個對它關注的原因就是因為這么大量和復雜的數據確實不好管理,這樣就有了處理大數據的一些技術,比如Hadoop。Hadoop是個開源的,像網路做搜索,就用Hadoop管理數據。淘寶在2011年11月11日,搞得優惠活動,你想想在零點的時候,淘寶點擊有多高,每一筆買賣算一個數據請求,那怎麼保證網站的正常運轉啊?這些就是一些技術方面的關注了。
3、它的作用更多,拿球賽說,我們現在可以通過比賽錄像找出對手缺點了。有個大數據應用是視頻教練工具,用這個工具,球員可以比較和對比同一投球手的不同投球,或是幾天或幾周的投球情況的時間序列數據。
4、解決的問題。你問的大數據解決什麼問題,應該是處理大數據的技術解決什麼問題。通過我上面說的,你大概也能知道一點了,管理大規模的復雜數據需要用到大數據的技術,通過大數據的技術把這些大數據管理分析好了,可以使企業領導對各方面有更明確的認識,做出更好的決策。
總結下:大數據更多的體現數據的價值。各行業的數據都越來越多,在大數據情況下,如何保障業務的順暢,有效的管理分析數據,能讓領導層做出最有利的決策。這是關注大數據的原因。也是大數據技術要解決的問題。
這些都是我自己寫的我個人的理解,供你參考。再有不明白的可以網路,或者加追問咱們共同探討。嘿嘿。
D. 如何正確認識大數據的價值和效益
1、數據使用必須承擔保護的責任與義務
我國數據流通與數據交易主要存在以下問題:數據源活性不夠,數據中介機構還處於起步階段;多源數據的匯集技術尤其是非結構化數據分析技術滯後;缺乏熟悉不同行業並掌握在特定領域使用數據技術的人才。
數據的價值在於融合與挖掘,數據流通、交易有利於促進數據的融合和挖掘,搞活數據從而產生效益。數據共享開放、流通交易和數據保護及數據安全對數據技術提出嚴峻挑戰,對法律的制定及執行提出了很高要求。為此,數據使用必須承擔保護的責任與義務。
E. 對大數據的理解,哪些是正確的
在麥肯錫全球研究所給出的定義中指出:大數據即是一種規模大到在獲取,存儲,管理,分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。簡單而言大數據是數據多到爆表。大數據的單位一般以PB衡量。那麼PB是多大呢?1GB=1024MB ,1PB=1024GB才足以稱為大數據。
其次,大數據具有什麼樣的特點和結構呢?
大數據從整體上看分為四個特點,
第一,大量。
衡量單位PB級別,存儲內容多。
第二,高速。
大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。
第二,多樣。
數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。
第三,價值。
大數據不僅僅擁有本身的信息價值,還擁有商業價值。大數據在結構上還分為:結構化,半結構化,非結構化。結構化簡單來講是資料庫,是由二維表來邏輯表達和實現的數據。非結構化即數據結構不規則或不完整,沒有預定義的數據模型。由人類產生的數據大部分是非結構化數據。
那我們身邊有哪些東西是大數據呢?
在生產生活中常見的有電信數據:通話數據、簡訊數據、手機瀏覽數據。銀行數據,微信聊天數據等。
最後,大數據能做什麼?
人們的生活離不開它,因為他在日常生活中發揮的作用逐漸加強。例如:用戶畫像,幫助人們制定個性化的需求,知識圖譜。人工智慧例如:谷歌的「阿爾法狗」在圍棋大賽中贏得、阿里巴巴的ET、網路的無人駕駛汽車等。數字貨幣,物聯網等。
F. 如何正確認識大數據技術
一、數據倉庫不需要大數據
數據倉庫是一種架構,而大數據純粹是一種技術。因此,人們不能在技術上取代其他人。像大數據這樣的技術可以存儲和管理大量數據,以合理的低成本將它們用於不同的大數據解決方案。
二、大數據技術將消除數據集成的必要性
大數據技術使用“讀取模式”方法來處理信息。這使組織可以使用多個數據模型來讀取相同的源。人們普遍認為,它可以靈活地允許終用戶確定如何按需解釋數據資產。此外,假設大數據提供針對各個用戶定製的數據訪問。
三、大數據總是質量數據
大數據並不一定意味著它包含干凈和高質量的數據。相反,在大多數情況下,大數據包括數據質量錯誤。此外,為了從收集的大數據中利用更好和正確的見解,有必要對它們進行清理。因此,錯誤的假設是不需要數據清理,收集或分析大數據。
四、大數據只用於分析
您將從各種來源獲得至少12種不同的大數據定義。在某個地方,它被定義為5V,在某個地方作為海量數據集,在某個地方它與分析相交。因此,每個人都有不同的方法來定義。
此外,大數據是一種除了數據分析之外還具有許多功能的技術。因此,大數據事實在許多場景中,它用於分析復雜的用例模式,以獲得更好的洞察力來解決問題。
五、Hadoop是內存技術的替代品
Hadoop是受歡迎的大數據工具。內存技術與Hadoop底層架構集成,有助於實時集成來自各種源的大量數據。因此,內存是Hadoop的理想平台及其技術基礎。
關於如何正確認識大數據技術,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。