⑴ 簡述資料庫 數據倉庫 和數據挖掘三者之間的關系
先說說數據倉庫和數據挖掘的關系,再說說資料庫與數據倉庫的關系
數據倉庫與數據挖掘的聯系
(1) 數據倉庫為數據挖掘提供了更好的、更廣泛的數據源。
(2) 數據倉庫為數據挖掘提供了新的支持平台。
(3) 數據倉庫為更好地使用數據挖掘這個工具提供了方便。
(4) 數據挖掘為數據倉庫提供了更好的決策支持。
(5) 數據挖掘對數據倉庫的數據組織提出了更高的要求。
(6) 數據挖掘還為數據倉庫提供了廣泛的技術支持。
數據倉庫與數據挖掘的差別
(1) 數據倉庫是一種數據存儲和數據組織技術, 提供數據源。
(2) 數據挖掘是一種數據分析技術, 可針對數據倉庫中的數據進行分析。
1、資料庫:是一種邏輯概念,用來存放數據的倉庫,通過資料庫軟體來實現。資料庫由很多表組成,表是二維的,一張表裡面有很多欄位。欄位一字排開,對數據就一行一行的寫入表中。資料庫的表,在於能夠用二維表現多維的關系。如:oracle、DB2、MySQL、Sybase、MSSQL Server等。
2、數據倉庫:是資料庫概念的升級。從邏輯上理解,資料庫和數據倉庫沒有區別,都是通過資料庫軟體實現存放數據的地方,只不過從數據量來說,數據倉庫要比資料庫更龐大德多。數據倉庫主要用於數據挖掘和數據分析,輔助領導做決策;
區別主要總結為以下幾點:
1.資料庫只存放在當前值,數據倉庫存放歷史值;
2.資料庫內數據是動態變化的,只要有業務發生,數據就會被更新,而數據倉庫則是靜態的歷史數據,只能定期添加、刷新;
3.資料庫中的數據結構比較復雜,有各種結構以適合業務處理系統的需要,而數據倉庫中的數據結構則相對簡單;
4.資料庫中數據訪問頻率較高,但訪問量較少,而數據倉庫的訪問頻率低但訪問量卻很高;
5.資料庫中數據的目標是面向業務處理人員的,為業務處理人員提供信息處理的支持,而數據倉庫則是面向高層管理人員的,為其提供決策支持;
6.資料庫在訪問數據時要求響應速度快,其響應時間一般在幾秒內,而數據倉庫的響應時間則可長達數幾小時
⑵ 淺談數據挖掘與數據倉庫
淺談數據挖掘與數據倉庫
1數據挖掘
1.1數據挖掘與傳統數據分析的區別
數據挖掘與傳統的數據分析,如查詢、報表、聯機應用分析的本質區別是數據挖掘是在沒有明確假設的前提下去挖掘信息、發現知識。數據挖掘所得到的信息應具有先前未知、有效和實用三個特徵。即數據挖掘是要發現那些不能靠直覺發現的信息或知識,甚至是違背直覺的信息或知識,挖掘出的信息越出乎意料就可能越有價值。而傳統的數據分析趨勢為從大型資料庫抓取所需數據並使用專屬計算機分析軟體。因此數據挖掘與傳統分析方法有很大的不同。
1.2數據挖掘的應用價值
(1)分類:首先從數據中選出已經分好類的訓練集,在該訓練集上運用數據挖掘分類的技術,建立分類模型,對於沒有分類的數據進行分類。(2)估計:與分類類似,不同之處在於,分類描述的是離散型變數的輸出,而估值處理連續值的輸出;分類是確定數目的,估計是不確定的。(3)聚類:是對記錄分組。聚類和分類的區別是聚集不依賴於預先定義好的類,不需要訓練集。中國移動採用先進的數據挖掘工具馬克威分析系統,對用戶wap上網的行為進行聚類分析,通過客戶分群,進行精確營銷。(4)關聯規則和序列模式的發現:關聯是某種事物發生時其他事物會發生的這樣一種聯系。例如:每天購買啤酒的人也有可能購買香煙,比重有多大,可以通過關聯的支持度和可信度來描述。與關聯不同,序列是一種縱向的聯系。例如:今天銀行調整利率,明天股市的變化。(5)預測:通過分類或估值得出模型,該模型用於對未知變數的預言。(6)偏差的檢測:對分析對象的少數的、極端的特例的描述,揭示內在的原因。除此之外,在客戶分析,運籌和企業資源的優化,異常檢測,企業分析模型的管理的方面都有廣泛使用價值。
2數據倉庫
2.1數據倉庫的特徵
(1)面向主題(Subject Oriented)的數據集合。數據倉庫圍繞一些主題如顧客、供應商、產品和銷售來組織。數據倉庫關注決策者的數據建模與分析,而不是組織機構的日常操作和事務處理。(2)集成(Integrated)的數據集合。數據倉庫中的數據是在對原有分散的資料庫數據抽取、清理的基礎上經過系統加工、匯總和整理得到的,必須消除源數據中的不一致性,以保證數據倉庫內的信息是關於整個企業的一致的全局信息。(3)時變(Time Variant)的數據集合。數據存儲從歷史的角度提供信息。數據倉庫中的數據通常包含歷史信息,通過這些信息,可以對企業的發展歷程和未來趨勢做出定量分析和預測。(4)非易失(Nonvolatile)的數據集合。數據倉庫的數據主要供企業決策分析之用,所涉及的數據操作主要是數據查詢,修改和刪除操作很少,通常只需要定期的載入、刷新。數據倉庫里的數據通常只需要兩種操作:初始化載入和數據訪問,因此其數據相對穩定,極少或根本不更新。[page] 2.2數據倉庫的類型
數據倉庫的類型根據數據倉庫所管理的數據類型和它們所解決的企業問題范圍,一般可將數據倉庫分為下列3種類型:企業數據倉庫(EDW)、操作型資料庫(ODS)和數據集市(Data Marts)。①企業數據倉庫為通用數據倉庫,它既含有大量詳細的數據,也含有大量累贅的或聚集的數據,這些數據具有不易改變性和面向歷史性。此種數據倉庫被用來進行涵蓋多種企業領域上的戰略或戰術上的決策。②操作型資料庫既可以被用來針對工作數據做決策支持,又可用做將數據載入到數據倉庫時的過渡區域。與EDW相比,ODS是面向主題和面向綜合的,易變的,僅含有目前的、詳細的數據,不含有累計的、歷史性的數據。③數據集市是為了特定的應用目的或應用范圍,而從數據倉庫中獨立出來的一部分數據,也可稱為部門數據或主題數據。幾組數據集市可以組成一個EDW。
2.3數據倉庫與傳統資料庫的比較
二者的聯系既有聯系又有區別。數據倉庫的出現,並不是要取代資料庫。目前,大部分數據倉庫還是用關系資料庫管理系統來管理的。可以說,資料庫、數據倉庫相輔相成、各有千秋。二者的區別可以從以下幾個方面進行比較:
(1)出發點不同:資料庫是面向事務的設計;數據倉庫是面向主題設計的。(2)存儲的數據不同:資料庫一般存儲在線交易數據;數據倉庫存儲的一般是歷史數據。(3)設計規則不同:資料庫設計是盡量避免冗餘,一般採用符合範式的規則來設計;數據倉庫在設計是有意引入冗餘,採用反範式的方式來設計。(4)提供的功能不同:資料庫是為捕獲數據而設計,數據倉庫是為分析數據而設計。(5)基本元素不同:資料庫的基本元素是事實表,數據倉庫的基本元素是維度表。(6)容量不同:資料庫在基本容量上要比數據倉庫小的多。(7)服務對象不同:資料庫是為了高效的事務處理而設計的,服務對象為企業業務處理方面的工作人員;數據倉庫是為了分析數據進行決策而設計的,服務對象為企業高層決策人員。
3數據倉庫與數據挖掘的關系
當然為了數據挖掘你也不必非得建立一個數據倉庫,數據倉庫不是必需的。建立一個巨大的數據倉庫,把各個不同源的數據統一在一起,解決所有的數據沖突問題,然後把所有的數據導到一個數據倉庫內,是一項巨大的工程,可能要用幾年的時間花上百萬的錢才能完成。只是為了數據挖掘,你可以把一個或幾個事務資料庫導到一個只讀的資料庫中,就把它當作數據集市,然後在他上面進行數據挖掘。
⑶ 何謂數據倉庫為什麼要建立數據倉庫何謂數據挖掘它有哪些方面的功能
何謂數據倉庫?為什麼要建立數據倉庫?
答:數據倉庫是一種新的數據處理體系結構,是面向主題的、集成的、不可更新的(穩定性)、隨時間不斷變化(不同時間)的數據集合,為企業決策支持系統提供所需的集成信息。
建立數據倉庫的目的有3個:
一是為了解決企業決策分析中的系統響應問題,數據倉庫能提供比傳統事務資料庫更快的大規模決策分析的響應速度。
二是解決決策分析對數據的特殊需求問題。決策分析需要全面的、正確的集成數據,這是傳統事務資料庫不能直接提供的。
三是解決決策分析對數據的特殊操作要求。決策分析是面向專業用戶而非一般業務員,需要使用專業的分析工具,對分析結果還要以商業智能的方式進行表現,這是事務資料庫不能提供的。
何謂數據挖掘?它有哪些方面的功能?
答:從大量的、不完全的、有雜訊的、模糊的、隨機的數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程稱為數據挖掘。相關的名稱有知識發現、數據分析、數據融合、決策支持等。
數據挖掘的功能包括:概念描述、關聯分析、分類與預測、聚類分析、趨勢分析、孤立點分析以及偏差分析等。