Ⅰ 數據分析師的就業前景如何
要了解數據分析師的前景可以根據以下的方式來判斷:
一、數據分析師通常分兩類:
一類是在專門的挖掘團隊裡面從事數據挖掘和分析工作的。如果你能在這類專業團隊學習成長,那是幸運的,但進入這類團隊的門檻較高,需要扎實的數據挖掘知識、挖掘工具應用經驗和編程能力。該類分析師更偏向技術線條,未來的職業通道可能走專家的技術路線。
另一類是下沉到各業務團隊或者運營部門的數據分析師,成為業務團隊的一員。他們工作是支撐業務運營,包括日常業務的異常監控、客戶和市場研究、參與產品開發、建立數據模型提升運營效率等。該類型分析師偏向產品和運營,可以轉向做運營和產品。
二、數據分析師的理想行業在互聯網,從行業的角度來看:
1)互聯網行業是數據分析應用最廣的行業,其中的電商企業,更是目前最火的,而且企業也更重視數據分析的價值,是數據分析師理想的成長平台。
2)其次是咨詢公司(比如專門的數據挖掘公司Teradata、尼爾森等市場研究公司),他們需要數據分析人才,而且相對來說,數據分析師在咨詢公司成長的速度更快,專業也會更全面。
3)再次是金融行業,比如銀行和證券等行業,該行業對數據分析的依賴需求,越來越大。
4)最後是電信行業(中國移動、聯通和電信),它們擁有海量的數據,在嚴峻的競爭下,也越來越重視數據分析,但進入這些公司的門檻比較高。
Ⅱ 想問下數據分析師培訓靠譜么職業前景如何
口碑方面:目前市場數據分析培訓機構有四大類
1,java大數據/java+EE大數據,市場很大一部分都是這樣,一共學習4個月,3個月在講java(達內,千鋒,兄弟連)
2.PHP大數據也和java一樣(尚學堂)
3,資料庫大數據比上面兩種能好點(科多,大講堂)
4,真正數據分析培訓市場也就幾家(光環大數據,小能大數據)
認證方面:市場證書有三種,看你獲得的證書屬於哪一種
1.培訓機構自己做的證書,我對此只能說,你們的想像力很豐富
2.國際證書Cloudera,很難考,但是市場上有這種認證的很少
3,工信部證書,國家承認的證書,這個證書是
Ⅲ 數據分析師的主要工作有哪些發展前景如何需要掌握哪些相關知識
數據分析師職位具有鮮明的時代特點和巨大的需求,在大學本科階段統計專業積極探索培養大學生的數據分析能力,進而為社會提供合格的數據分析師人才的有效對策,具有重要的研究價值和實踐意義。
一、數據分析師培養的意義
(一)數據分析師的培養符合國家戰略
為適應世界經濟一體化的進程,徹底改變我國「項目數據分析」專業技術人才緊缺的現狀,2005 年 4 月,全國第一家數據分析事務所在陝西成立,到目前,我國相繼已有北京、陝西、江蘇、新疆、甘肅、山東、浙江、上海、黑龍江等 14 個省、市、自治區約 80 家項目數據分析專業機構進入中國市場經濟舞台,涉及項目已從最初的分析評估業和金融業,擴展至會計師、投融資機構、政府審批和企業管理等眾多領域。隨著大數據時代的來臨,構建大數據研究平台、整合創新資源、實施「專項計劃」等成為各個省市的工作重點之一。
(二)數據分析師的就業前景光明
在被視為「數據元年」的今天,數據分析師以待遇優厚和地位尊崇而聞名國際,曾被Times時代雜志譽為「21世紀最熱門五大新興行業」。今天,國內數據分析行業專業人才每年以千位數非速增長著,同期各行業領域空缺崗位已達近二十萬,未來中國對數據分析師的需求更是呈井噴之勢。
在數據分析人才培養上,國外已經將數據分析師人才作為國家戰略。據統計,目前世界 500 強企業中,有90% 以上建立了數據分析部門。大數據時代對數據分析師的巨大需求也大大刺激了高等院校的培養熱情。
二、數據分析師職業素養的培養
通過對各大招聘網站數據分析師、市場調查分析師等職位招聘信息的搜集整理和深入分析,挖掘並歸納出社會用人單位對數據分析師職位的知識技能和道德素質等方面的具體要求如下:
(一)數據分析師的職業內涵
數據分析師是指在不同行業中,專門從事數據搜集、整理、分析,並依據數據做出行業或市場研究、評估和預測的專業人員;是以實際數據為依據,對項目現狀及遠期進行統計、分析、預測並轉化為決策信息的專業人才。數據分析師可以通過掌握的大量行業數據,運用科學的計算工具,將經濟學原理與數學模型結合,進行科學合理的定量分析,數據分析師可以預測企業未來的收益及風險,為企業經營決策提供科學量化分析的依據。
目前數據分析師的認證主要有 2個:一是注冊數據分析師(CDA),由CDA注冊數據分析師協會Certified Data Analyst Institute)在順應大數據、雲計算的潮流下發起成立的職業簡稱;二是項目數據分析師(CPDA),由中國商業聯合會數據分析專業委員會以及工信部教育考試中心共同考核認證,證書是申請成立項目數據分析事務所的必備條件之一。
(二)數據分析師的知識要求
掌握多元統計分析、應用回歸分析、時間序列分析、計量經濟學、經濟預測研究等統計建模方法,了解本行業統計方法的新進展;掌握 SQL/oracle 等資料庫的數據整理、查詢、提取等方法;熟練使用相關的統計軟體,准確解讀軟體的運行結果;了解相關行業的業務知識和數據構成。
(三)數據分析師的能力要求
對信息、數據敏感,具備較強的文字功底,能獨立撰寫研究報告;能熟練使用 SPSS/SAS/Eviews 等統計分析軟體,具備數據分析或數據挖掘的綜合能力;掌握資料庫體系結構及數據架構,具備 Excel/SQL 或 Access 的查詢語句運用技能與知識,有良好的數據處理、建立統計模型能力。
(四)數據分析師的崗位職責
承擔行業、企業有關信息、數據的調查、搜集、整理、分析研究和發布工作;參與專項研究、課題和調研咨詢項目,撰寫行業分析文章和研究報告;對大數據進行深入挖掘,建立相關模型進行預測、分析,找出相關的聯系,揭示內在規律,為行業、企業決策提供依據。
三、數據分析師的培養方案
培養方案是高等教育辦學思想和辦學理念的集中體現,為突出數據分析的培養特色,統計專業應在深入分析數據分析職業需求的前提下,最終制定出符合數據分析師培養要求的課程體系。
(一)培養目標
為學生畢業後能夠成為各行業中數據分析領域的專門人才,確定了統計專業學生在本科教育階段的培養目標:一是具備良好的經濟學、管理學和財務管理等基本素養;二是了解相關行業知識、公司業務流程;三是掌握統計學的基本理論與方法,具備熟練使用 SPSS/SAS 等統計分析軟體進行數據分析或數據挖掘的綜合能力;四是掌握資料庫體系結構及數據架構,具備 Excel/SQL 或Access 的查詢語句運用技能與知識,有良好的數據處理、建立統計模型能力;五是具備較強的文字功底,能獨立撰寫數據分析研究報告。
(二)課程體系設立原則
在本科教育階段,培養數據分析師的課程設置應貫徹「三結合」的原則。
1. 多門學科相結合。數據分析工作是多個學科、多門專業在企業決策中的綜合應用,要成為優秀的數據分析師,必須做到多門學科的融會貫通。需熟悉或了解數學、統計學、經濟學、金融學、管理學、營銷學等學科的相關知識。
2. 理論研究與實踐應用相結合。高等學校一般都建有比較成熟的教學實踐基地和實習基地,學生在理論學習後,可以到企事業單位或財政、金融、保險等行業進行針對性的實習實踐,了解相關行業的業務知識和數據構成,運用所學知識進行數據分析,獨立或合作完成數據分析研究報告。
3. 專業教育與技術資格教育相結合。通過學習,學生可獲得統計學專業理學學士學位或者經濟學學士學位;通過參與社會上的技術資格考試,可獲得數據分析、統計師、調查分析師等專業技術資格證書。兩者的結合,更有利於學生從封閉校園走向開放社會,增加技能的同時,更好地融入社會、適應社會。
(三)課程體系的基本框架
在整個教學過程中,可以將每個學期分為長、短兩個小學期,短學期內設置一些與就業崗位相關的、以技能培養為目標的短期集中實踐教學環節,主要是崗位實訓課程。長學期課程分為4個系列:基礎課程、方向課程、綜合實踐課程、職業拓展課程。通過整合相關知識,優化課程結構,強化實踐技能,突出崗位技能實訓等手段構建課程體系,以達到培養學生具有數據分析師的基本技能和素養的目的。
四、數據分析師培養過程中的策略
(一)教學內容整合策略
在課程體系和課程設置的總體構建下,按照課程模塊化的思路,重新梳理課程教學內容、教學進度和深度,剔除陳舊、重復的內容,加強理論聯系實際內容,增添培養綜合運用能力內容,實現教學內容的整合優化。例如,《應用回歸分析》與《計量經濟學》的內容多有重復,可以將《應用回歸分析》並入《計量經濟學》;又如,《描述統計學》《數理統計》《計量經濟學》和《統計預測與決策》等課程有部分重復內容,必須在對知識的審慎梳理基礎上,整合相應的教學內容,重新制定教學文件。
(二)實驗環節設置策略
找准專業知識方法與實際問題的結合點,並分析研究當前的熱點和難點問題,充實和豐富實踐教學內容,編寫具有應用背景、切實達到鍛煉效果的實驗指導書和指導材料,以明確實驗的具體環節、目的與要求。每個實驗項目應包含實驗性質、實驗目的、實驗要求、實驗內容、實驗步驟和結果分析等部分。所有課程的實驗內容由淺入深,循序漸進,實現實踐教學規范化。
(三)軟體教學安排策略
為使學生充分掌握相關的統計軟體,熟練使用恰當的軟體從事數據的整理、分析,將統計軟體的教學分為三個層次:一是單獨開設 SPSS、SQL Server 資料庫課程;二是課堂內開設Lingo、Eviews、SAS 等軟體實驗;三是短學期和綜合訓練開設 Latex、R 等軟體課程,實現軟體教學層次化。
(四)實踐課程操作策略
為了強化學生的實踐能力和就業競爭力,在短學期實踐開設職場禮儀與溝通實、PPT 製作、統計模型、實訓統計調查方法與實務、辦公自動化實訓等項目;各學期綜合訓練分別開設統計流程與分析寫作、會計實踐軟體、統計分析案例等項目,實現綜合實踐職業化。
(五)拓展課程設計策略
聘任有豐富實踐經驗的統計師、調查分析師和企業家為兼職教授或校外導師,強化校外實踐;結合第二課堂,開展與專業教學相結合的、豐富多樣的課外活動;同時利用大學生統計建模大賽、大學生市場調查分析大賽、大學生數學建模競賽等學科競賽鍛煉學生綜合能力,實現職業拓展多樣化。
五、數據分析師培養的保障措施
(一)整合各種教育資源,提高教學效率
沒有經費的保證,數據分析師的培養只能紙上談兵。所以,學校、二級學院應設立加大資金投入,從軟硬體兩方面大力支持,保證經費落到實處。利用學校現有資源 , 籌建開放實驗室與實習基地,創造培養數據分析師的良好環境。
數據分析師培養必須實行產學結合,堅持開門辦學,與企業聯合培養的方式。創立高校與行業企業聯合培養人才的新機制,改變目前高校人才培養和行業企業需求脫節的現象。通過聯合辦學、共建等方式利用社會資源設立實習、實驗基地。
(二)建立導師制,強化教師的指導作用
為提高學生數據分析的水平,進入大二後 , 二級學院應推行本科「導師制」;到了大三 , 已經具備了一定的科研能力的本科生可以在導師的指導下參加各種與數據分析有關的專業競賽和創新實踐活動,親身體驗數據分析活動的整個過程 , 提高數據分析的基本技能與創新意識;在導師的全程參與和指導下,完成大四階段的校內綜合實訓、校外畢業實習和畢業論文的撰寫工作,使實踐鍛煉全程得到有效監控,保證教學質量。
(三)充分利用各級社團組織,
開展第二課堂的活動第二課堂是課堂教學的延伸和補充。在各級社團組織的規劃和部署下,加大人力、物力的投入,將第二課堂與第一課堂進行系統性、綜合性考慮與設計,實施規范化管理與組織運作,制訂好一系列的活動方案,為培養數據分析師通過更多的鍛煉途徑和方式。
(四)改革評價機制,激發學生的學習興趣
評價是引導師生的指揮棒,大多數學生和教師總會在現行的評價體系引導下來尋求「佳績」。要培養出未來的數據分析師,必須增強學生的學習主動性,提高學生的實踐能力。通過各種活動、各種途徑加強對學生能力的培養,必須要靠科學的評價體系來衡量。為此,建立「N+2」過程考核評價體系 , 對學生能力培養、訓練的全過程進行跟蹤調查,通過測試、信息反饋的結果來反映教育、培訓的效果和評價學生創造力的變化。
總之,項目數據分析(師)事務所在國內正迅速增長,並為政府、金融機構、企業的決策提供著日益重要的參考信息,具有良好的成長和發展空間。如何在信息海洋中找到有效的信息,如何通過有效的數據來科學決策變得尤為重要,因此數據分析師的前景必定輝煌。
Ⅳ 中國有哪些數據分析公司
目前國內專注於數據分析業務的公司主要是項目數據分析師事務所,據我所知北京有中顥潤項目數據分析師事務所,這個是最早成立的事務所,名氣很大