㈠ 爬蟲技術可以爬取什麼數據
簡單來講,爬蟲就是一個探測機器,它的基如局本操作就是模擬人的行為去各個網站溜達,點點按鈕,查查數據,或者把看到的信息背回敗橡巧來。就像一隻蟲子在一幢樓里不知疲倦地爬來爬去。
所以說,爬蟲系統有2個功能:
爬數據
爬取數據,比如你想要知道1000個商品在不同的電商網站的價格分別是多少,這樣你可以采購到最低價。人工一頁頁打開太慢了,而且這些網站也在不停更新價格。你就可以用爬蟲系統,設定好邏輯,幫你從N個網站爬取你要的商品的價格,甚至可以同步進行比較計算,最後輸出一份報告給你,哪個網站最便宜。
市面上有很多察鍵0代碼的免費爬蟲系統,比如之前我為了爬取2個游戲虛擬物品在不同網站的差異,就使用過,非常簡便。這里就不說名字了,有做廣告的嫌疑。
㈡ Python爬蟲可以爬取什麼
Python爬蟲可以爬取的東西有很多,Python爬蟲怎麼學?簡單的分析下:
如果你仔細觀察,就不難發現,懂爬蟲、學習爬蟲的人越來越多,一方面,互聯網可以獲取的數據越來越多,另一方面,像 Python這樣的編程語言提供越來越多的優秀工具,讓爬蟲變得簡單、容易上手。
利用爬蟲我們可以獲取大量的價值數據,從而獲得感性認識中不能得到的信息,比如:
知乎:爬取優質答案,為你篩選出各話題下最優質的內容。
淘寶、京東:抓取商品、評論及銷量數據,對各種商品及用戶的消費場景進行分析。
安居客、鏈家:抓取房產買賣及租售信息,分析房價變化趨勢、做不同區域的房價分析。
拉勾網、智聯:爬取各類職位信息,分析各行業人才需求情況及薪資水平。
雪球網:抓取雪球高回報用戶的行為,對股票市場進行分析和預測。
爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。
1.學習 Python 包並實現基本的爬蟲過程
2.了解非結構化數據的存儲
3.學習scrapy,搭建工程化爬蟲
4.學習資料庫知識,應對大規模數據存儲與提取
5.掌握各種技巧,應對特殊網站的反爬措施
6.分布式爬蟲,實現大規模並發採集,提升效率
一
學習 Python 包並實現基本的爬蟲過程
大部分爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。
當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。
二
了解非結構化數據的存儲
爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。
開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。
當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。
三
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
四
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。
五
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了.
六
分布式爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。
Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。
所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架構了,實現一些更加自動化的數據獲取。
你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好。
因為爬蟲這種技術,既不需要你系統地精通一門語言,也不需要多麼高深的資料庫技術,高效的姿勢就是從實際的項目中去學習這些零散的知識點,你能保證每次學到的都是最需要的那部分。
當然唯一麻煩的是,在具體的問題中,如何找到具體需要的那部分學習資源、如何篩選和甄別,是很多初學者面臨的一個大問題。
以上就是我的回答,希望對你有所幫助,望採納。
㈢ 爬蟲可以干什麼
(一)收集數據
python爬蟲程序可用於收集數據。這也是最直接和最常用的方法。由於爬蟲程序是一個程序,程序運行得非常快,不會因為重復的事情而感到疲倦,因此使用爬蟲程序獲取大量數據變得非常簡單和快速。
由於99%以上的網站是基於模板開發的,使用模板可以快速生成大量布局相同、內容不同的頁面。因此,只要為一個頁面開發了爬蟲程序,爬蟲程序也可以對基於同一模板生成的不同頁面進行爬取內容。
(二)調研
比如要調研一家電商公司,想知道他們的商品銷售情況。這家公司聲稱每月銷售額達數億元。如果你使用爬蟲來抓取公司網站上所有產品的銷售情況,那麼你就可以計算出公司的實際總銷售額。此外,如果你抓取所有的評論並對其進行分析,你還可以發現網站是否出現了刷單的情況。數據是不會說謊的,特別是海量的數據,人工造假總是會與自然產生的不同。過去,用大量的數據來收集數據是非常困難的,但是現在在爬蟲的幫助下,許多欺騙行為會赤裸裸地暴露在陽光下。
(三)刷流量和秒殺
刷流量是python爬蟲的自帶的功能。當一個爬蟲訪問一個網站時,如果爬蟲隱藏得很好,網站無法識別訪問來自爬蟲,那麼它將被視為正常訪問。結果,爬蟲「不小心」刷了網站的流量。
除了刷流量外,還可以參與各種秒殺活動,包括但不限於在各種電商網站上搶商品,優惠券,搶機票和火車票。目前,網路上很多人專門使用爬蟲來參與各種活動並從中賺錢。這種行為一般稱為「薅羊毛」,這種人被稱為「羊毛黨」。不過使用爬蟲來「薅羊毛」進行盈利的行為實際上遊走在法律的灰色地帶,希望大家不要嘗試。
㈣ 網路爬蟲抓取數據 有什麼好的應用
一般抓數據的話可以學習Python,但是這個需要代碼的知識。
如果是沒有代碼知識的小白可以試試用成熟的採集器。
目前市面比較成熟的有八爪魚,後羿等等,但是我個人習慣八爪魚的界面,用起來也好上手,主要是他家的教程容易看懂。可以試試。
㈤ 爬蟲能爬到哪些數據
爬蟲的概念是,爬取網上能看到的數據,也就是只要網上存在的,通過瀏覽器可以看到的數據。爬蟲都可以爬取。爬蟲爬取的原理就是偽裝成瀏覽器,然後進行爬取操作
哪些數據你需要你就可以爬取。比如爬取公司競爭對手的商業數據,爬取電影,音樂,圖片等等的。只要你希望得到的,前提瀏覽器可以訪問的都可以爬取