1. 大數據畢業後去什麼崗位就業 哪些工作前景最好
大數據畢業後的工作方向有:大數據維護、研發、架構工程師方向的工作;所涉及的職業崗位為:大數據工程師、攜激大數據維護工程師、大數據研發工程師、大數據架構師等。
信息架構工程師工作:信息架構師需要懂得如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。
數據規劃師工作:數據規劃師在一個產品設計之前,為企業各項決策提供關鍵性數據支撐,實現企業數據價值的最大化,更好地實施差異化競爭,幫助企業在競爭中獲得先機。
大數據分析師工作:大數據分析師需要對海量的大數據做分析、挖掘和展現,並且將其中有價值的信息提取出來為決策提供支持。
大數據相關崗位有個幾年的工作經驗薪資過萬是很容易得,有的崗位工資翻了一番,大數據工作崗位工資確實是高。在北上廣這些城市工資還能往上提,高學歷和豐富的大數據工作經驗都是加分項。
隨著互聯網人工智慧的發展,大數據人才需求也會更多,大家所熟知的社交卜隱余、購物平台都運用大數據技術對用戶行為愛好做定向推薦。大數據發展的趨勢型滾只會越來越好,大數據崗位工資上萬不是很難。
需要掌握的技術也比較多,以大數據開發工程師工作為例,一般都要求熟練掌握hadoop生態的大數據開發工具,包括Spark,Hbase,Hive,Hudi,ElasticSearch,Flink,Canal等,精通至少一門編程語言(Java,Scala,Python)。有技術在手高薪就業真不是難事,特別是大數據專業,發展前景好、人才需求大,一般剛出來的實習工資都在7-13k,在it行業算是頂尖的了。
所以說大數據崗位薪資是挺高的,月入過萬也只是起步。大數據是需要有一定的編程開發基礎的,0基礎轉行需要慎重考慮。知識經驗都掌握在手就不怕沒有高薪的工作了。
2. 學大數據可以從事什麼職業
大數據可以從事大數據開發工程師、Hadoop開發工程師、數據挖掘、信息架構工程師、大數據分析師等等。
1、大數據開發工程師
大數據開發工程師:統計;精簡到兩類指標:PV和UV;精簡到一句話就是:統計各種指標的PV和UV。具體的工作並不是這么的簡單,還需要從業者具備hadoop、spark、kafka、python等知識的應用。
2、Hadoop開發工程師
信息時代數據的爆發式增長,使得數據的規模越來越大,傳統BI即商務智能的數據處理成本高漲,加劇了企業的負擔。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。
3、數據挖掘
數塵枝老據被清理並准備好進行檢查,就可以通過數據挖掘開始搜索過程。這就是企業進行實際發現、決策和預測的搭敗過程。數據挖掘在很多方面都是大數據流程的真正核心。
4、信息架構工程師
信息架構師需要懂得定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等,信息架構工程師的工作內容。
5、大數據分析師
大數據分析師需要對海量的大數據做分析、挖掘和展現,並且將其中有價值的信息提派升取出來為決策提供支持,而大數據分析師實際上就是從事這類工作的從業人員。
《大數據人才報告》指出,目前全國的大數據人才僅46萬,未來3-5年內將會出現高達150萬的大數據人才的缺口。
當下中國互聯網行業需求最多的六類人才職位為研發工程師、產品經理、人力資源、市場營銷、運營和數據分析。其中需求量最大的是研發工程師,而最為稀缺的是數據分析人才。領英報告表明,高度稀缺的是數據分析人才,其供給指數最低,僅為0.05。並且其才跳槽速度也最快,平均跳槽速度為19.8個月。
根據中國商業聯合會數據分析專業委員會統計,未來中國基礎性數據分析人才缺口將高達到1400萬,而在BAT企業招聘的職位里,60%以上都在招大數據人才。
3. 大數據工作崗位有哪些 就業方向是什麼
大數據工作崗位主要圍繞數據價值化來展開,涉及到數據採集、數據整理、數據存儲、數據分析、數據安全、數據應用等諸多方面。大數據的就業前景很好,未來發展十分廣闊。
大數據工作1、大數據開發工程師
架構的開發、構建、測試和維護;負責公司大數據平台的開發和維護,負責大數據平台持續集成相關工具平台的架構設計和產品開發等。
大數據工作2、數據分析師
收集、處理和執行統計數據分析;應用工具提取、分析、呈現數據,實現數據的業務意義,需要業務理解和工具應用能力。
大數據工作3、數據挖掘工程師
數據建模、機器學習和演算法實現;商業智能、用戶體驗分析、用戶流失預測等;除了強大的跡則灶數學和統計能力,對演算法代碼實現也有很高的要求。
大數據工作4、數據架構師
需求分析、平台選擇、技術架構設計、應用設計與開發、測試與部署;先進的演算法設計和優化;需要具備數據相關的系統設計和優化、平台級開發和架構設計能力。
大數據工作5、資料庫開發
根據客戶需求設計、開發和實現資料庫系統,通過理想的介面連接資料庫和資料庫工具,優化資料庫系統的性能和效率等。
大數據工作6、資料庫管理
資料庫設計、數據遷移、資料庫性能管理、數據安全管理、故障排除、數據備份、數據恢復等。
大數據工作7、數據科學家
數據挖掘架構、模型標准、數據報告、數據分析方法;利用演算法和模型提高數據處理效率,挖掘數據價值,實現數據到知識的轉化。
大數據工作8、數據產品經理
結合數據和業務,做數據產品;平台線提供基礎平台和通用數據工具,業務線提供更貼近業務的分析框架和數據應用。
從近兩年大數據方向研究生的就業情況來看,姿扮大數據領域的崗位還是比較多的,尤其是大數據開發崗位,目前正逐漸從大數據平台開發向大數據應用開發領域覆蓋,這也是大數據開始全面落地應用的必然結果。
大數據開發工作崗位的數量明顯比較多,而且不僅需要研發型人才,也需要應用型人才,所以本科生的就業機會也比較多。
當前大數據技術正處在落地應用的初期,所以此時人才招聘會更傾向於研發型人才,而且擁有研究生學歷也更容易獲得大廠的工作機會,所以對於當前大數據相關專業的大學生來說,如果想獲得更強的崗位競爭力和更多的就業渠道,應該考慮讀一下研究生。
4. 大數據的就業方向
大數據的擇業崗位有:
1、大數據開發方向; 所涉及的職業崗位為:大數據工程師、大數據維護工程師、大數據研發工程師、大數據架構師等;
2、數據挖掘、數據分析和機器學習方向; 所涉及的職業崗位為:大數據分析師、大數據高級工程師、大數據分析師專家、大數據挖掘師、大數據演算法師等;
3、大數據運維和雲計算方向;對應崗位:大數據運維工程師。
大數據學習內容主要有:
①JavaSE核心技術;
②Hadoop平台核心技術、Hive開發、HBase開發;
③Spark相關技術、Scala基本編程;
④掌握Python基本使用、核心庫的使用、Python爬蟲、簡單數據分析;理解Python機器學習;
⑤大數據項目開發實戰,大數據系統管理優化等。
想要系統學習,你可以考察對比一下開設有IT專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能,南京北大青鳥、中博軟體學院、南京課工場等都是不錯的選擇,建議實地考察對比一下。
祝你學有所成,望採納。
5. 大數據技術是學什麼的就業方向
大數據技術是學數學專業、計算機專業的就業方向。
大數據技術里會用到很多學科學習的知識,並不是單一的專業可以學完大數據所需要掌握的技術,所以大數據屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。
6. 大數據技術與應用就業方向 有哪些崗位
大數據領域可以說是未來發展幾大領域當中比較有前景的領域之一,畢業之後就業的前景也是比較好的,比如說我們現在熟知的阿里巴巴就在從事著大數據領域。
(1)行業客戶:對大數據處理有需求的各行業部門,如銀行、商業機構、電信、電商公司等,從事數據採集、管理、分析與挖掘工作
(2)專業公司:專門為行業客戶提供大數據服務的專業化公司,比如管理咨詢公司,信息咨詢公司、還有從事大數據技術和產品研發與服務的高科技公司,如網路、阿里、騰訊等。
(1)大數據工程師:從事數據採集與管理工作,需要較強的IT專業能力,這個崗位也有很多別名,如hadoop工程師、javag工程師(大數據)、ETL工程師等,關鍵看其崗位職責和技能需求,別看名字。應屆生月薪平均在10k以上,
(2)大數據分析師:從事數據資源開發與利用,主要工作是數據分析、和數據挖掘,能出圖表、出報告。需要數量使用一些分析工具,比如spss、SAS,如果能使用編程的方式靈活進行數據分析,就更好了,比如python或R. 這個崗位也有別名,比如數據分析師,商務智能分析師。應屆生月薪大約在8k以上。
(3)演算法工程師:從事機器學習,構建人工智慧模型,也稱機器學習工程師,在商業領域,也有稱為商務智能工程師的。該崗位需要很強的數學分析能力和編程能力,是三個崗位中的金領職位,也是月薪最高的職位,應屆生月薪目前在15K以上。
1、有一個體面的學歷
首先我們一定要知道大數據屬於高科技領域,在這方面所要求的起步是非常高的,所以應局畢業生應該盡量有一個較高的學歷,雖然高學歷並不能代表高能力,但這最起碼可以代表一個敲門磚,如果沒有高學歷的話是很難進入這個行業的,因此我建議大家在這方面要多努力一下。
2、有真本領
僅僅有一個體面的學歷是不夠的,想要找到一份好的工作,而且非常有發展的話,需要有一定的真本領,也就是說我們在這個領域方面的專業技術一定要非常強,上面我們所提到的王堅就是在計算機領域非常厲害的一個人,因此我建議大家多注重一下自己專業技能的鍛煉。
3、有推薦人
在畢業之後想要快速的在一家非常好的公司就業的話,我建議最好的方法是有一個推薦人幫助你推薦一下,對於人脈資源比較貧乏的大學生來說,我們可以在實習階段多幫別人做一做事,用以打通我們的人脈關系,這樣在就業的時候會顯得更加容易一些。
7. 大數據所從事什麼工作
大數據技術專業可以從事的工作有這些:
視數據的機構已經越來越多,上到國防部,下到互聯網創業公司、金融機構需要通過大數據項目來做創新驅動,需要數據分析或處理崗位也很多;常見的食品製造、零售電商、醫療製造、交通檢測等也需要數據分析與處理,如優化庫存,降低成本,預測需求等。人才主要分成三大類:大數據系統研發類、大數據應用開發類、大數據分析類,熱門崗位有:
1.大數據系統架構師
大數據平台搭建、系統設計、基礎設施。技能:計算機體系結構、網路架構、編程範式、文件系統、分布並行處理等。
2.大數據系統分析師
面向實際行業領域,利用大數據技術進行數據安全生命周期管理、分析和應用。技能:人工智慧、機器學習、數理統計、矩陣計算、優化方法。
3.hadoop開發工程師。
解決大數據存儲問題。
4.數據分析師
不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
作為一名數據分析師,至少需要熟練SPSS、STATISTIC、Eviews、SAS、大數據魔鏡等數據分析軟體中的一門,至少能用Acess等進行資料庫開發,至少掌握一門數學軟體如matalab、mathmatics進行新模型的構建,至少掌握一門編程語言。總之,一個優秀的數據分析師,應該業務、管理、分析、工具、設計都不落下。
5.數據挖掘工程師
做數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,最基本的比如線性代數、高等代數、凸優化、概率論等。經常會用到的語言包括Python、Java、C或者C++,有時用MapRece寫程序,再用Hadoop或者Hyp來處理數據,如果用Python的話會和Spark相結合
6.大數據可視化工程師
隨著大數據在人們工作及日常生活中的應用,大數據可視化也改變著人類的對信息的閱讀和理解方式。從網路遷徙到谷歌流感趨勢,再到阿里雲推出縣域經濟可視化產品,大數據技術和大數據可視化都是幕後的英雄
大數據可視化工程師崗位職責:1、 依據產品業務功能,設計符合需求的可視化方案。2、 依據可視化場景不同及性能要求,選擇合適的可視化技術。3、 依據方案和技術選型製作可視化樣例。4、 配合視覺設計人員完善可視化樣例。5、 配合前端開發人員將樣例組件化。
想了解更多大數據從事工作的問題, 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。