❶ 我是小公司那裡獲得大數據
在數據時代,中小企業只有把握好自己的優勢,通過網路數據等資源充分整合來得到所需利益,也就是淘金。具體情況要分類分析:
如果是網路公司,那麼先要弄明白自己的優勢有什麼,有什麼可用的資源,能否和大企業接邊,能不能利用這些資源提供優質服務,如果可以,那麼就可以從這些方面取得利益。
如果是實體產業企業,那麼就要根據數據化的社會找到更適合客戶需求的產品,或者說生產更有競爭優勢的產品,同時現在很多實體企業都通過網路銷售,所以可以根據具體情況分析有用資源,進行資源整合。
❷ 初創公司利用大數據的最佳方式
初創公司利用大數據的最佳方式
人們認識到大多數初創公司都有一個共同點,那就是利用他們的創新理念可以明智而有效地使用大數據。他們通過使用從各種分析工具和活動收集的大量數據來影響市場方向和用戶行為。大多數啟動應用程序開發公司及其專家現在專注於使用用戶在應用程序中生成的大量數據。
創業總是一個冒險的主張。無論是用戶,還是投資者和資金,其是否增長,這都不能保證。世界上約97%的創業公司沒有獲得成功,只有3%的創業公司想法得以執行。創業公司的成功背後有很多原因,這可能是思維想法的唯一性,也可能是構建應用程序的UI/UX設計,或者可能是解決或緩解公眾或企業所面臨的問題。最近,人們認識到大多數初創公司都有一個共同點,那就是利用他們的創新理念可以明智而有效地使用大數據。他們通過使用從各種分析工具和活動收集的大量數據來影響市場方向和用戶行為。大多數啟動應用程序開發公司及其專家現在專注於使用用戶在應用程序中生成的大量數據。以一個簡單的例子來說明企業如何使用大數據,施樂公司是一家銷售文檔解決方案的國際公司,通過招聘最優秀的人才,使員工流失率降低了一半。使用認知分析和個性技能測試,施樂公司發現了與實際工作描述相匹配的合適資源。在大數據的幫助下,他們發現員工留任與員工敬業度之間的關系。這是初創公司能夠利用每秒鍾生成的大量數據的最佳方式之一。還有其他幾種方法可以讓初創企業將大數據投入使用,並利用其工具和技術的最大潛力。如果是創業企業,或者正在醞釀自己的想法,那麼可以採用數十億美元的經過驗證的策略用於大型數據分析,這是全球知名廠商曾經創業的實施策略。盈利策略大數據技術自2006誕生以來日趨成熟。早些時候,這是一個批量的過程。但企業要求即時洞察實時數據,許多先進的大數據創業公司應運而生,其中包括Couchbase,Cognonto,MapD等公司帶來最好的分析和處理技術。星巴克:咖啡巨頭星巴克公司已經使用大數據來確定他們新咖啡店在其他商店相鄰的特定地點是否可以獲得成功。而在同一地區開設了相鄰的咖啡店之後,星巴克通過使用基於位置的數據,人口數據和客戶數據,保證了其所有商店的成功。有了這些數據,他們可以根據收入增長的趨勢來判斷每個新位置的成功率。CapitalOne:美國金融商CapitalOne公司通過人口統計數據深入研究了客戶的消費習慣,他們能夠確定最佳時機,向客戶展示各種優惠,確保獲得更多的潛在客戶和最高的轉化次數。亞馬遜:這是電子商務和零售業中的一個偉大的例子,它利用大數據使人們喜歡這個平台。根據最新的10-K年度報告,亞馬遜公司從其零售訂閱服務中獲得了64億美元的銷售額。它一直專注於智能市場可視化,更好的流程圖。亞馬遜公司也意識到,為了使客戶互動變得個性化和人性化,他們必須充分了解情況。而且,因此,每個表單中的客戶數據是有用的。在未來的日子裡,精明的零售商將更加關注他們的數據收集工作,以便他們能夠最好地使用結果。為了充分利用大數據,作為初創企業應該明白,在使用其產品和服務時,透明度和為消費者提供一種控制感是可以獲得他們信任最好的方式。因為他們不會因為企業對他們了解多少而印象深刻,而是對企業所找到的東西感興趣。現在,企業必須決定如何更好地使用數據。並能夠找到一些更具創新性的方法來處理大數據。
❸ 創建大數據項目的五大步驟
創建大數據項目的五大步驟
企業需要積極的提升他們的數據管理能力。這並非意味著他們應該制定繁瑣的流程和監督機制。明智的企業會配合他們的數據活動的生命周期制定靈活的流程和功能:根據業務需求啟動更輕更嚴格、更強大的功能,並根據需求的增加來提升質量或精度。
一些企業正在利用新興技術來應對新的數據源,但大多數企業仍然面臨著需要努力管理好他們已經掌握或者應當掌握的數據信息的困境,而當他們試圖部署大數據功能時,發現自己還需要面對和處理新的以及當下實時的數據。
為了能夠實現持久成功的大數據項目,企業需要把重點放在如下五個主要領域。
1、確立明確的角色分工和職責范圍。
對於您企業環境中的所有的數據信息,您需要對於這些數據信息所涉及的關鍵利益相關者、決策者有一個清晰的了解和把控。當數據信息在企業的系統傳輸過程中及其整個生命周期中,角色分工將發生變化,而企業需要對這些變化有一個很好的理解。當企業開始部署大數據項目之後,務必要明確識別相關數據的關鍵利益相關者,並做好這些數據信息的完善和迭代工作。
2、加強企業的數據治理和數據管理功能。
確保您企業的進程足夠強大,能夠滿足和支持大數據用戶和大數據技術的需求。進程可以是靈活的,並應充分考慮到業務部門和事務部門的需求,這些部門均伴有不同程度的嚴謹性和監督要求。
確保您企業的參考信息架構已經更新到包括大數據。這樣做會給未來的項目打好最好的使用大數據技術和適當的信息管理能力的基礎。
確保您企業的元數據管理功能足夠強大,能夠包括並關聯所有的基本元數據組件。隨著時間的推移,進行有序的分類,滿足業務規范。
一旦您開始在您企業的生產部門推廣您的解決方案時,您會希望他們長期持續的使用該解決方案,所以對架構功能的定義並監督其發揮的作用是至關重要的。確保您企業的治理流程包括IT控制的角色,以幫助企業的利益相關者們進行引導項目,以最佳地利用這些數據信息。其還應該包括您企業的安全和法務團隊。根據我們的經驗,使用現有的監督機制能夠達到最佳的工作狀態,只要企業實施了大數據應用,並專注於快速在進程中處理應用程序,而不是阻礙進程的通過。
3、了解環境中的數據的目的和要求的精度水平,並相應地調整您企業的期望值和流程。
無論其是一個POC,或一個已經進入主流業務流程的項目,請務必確保您對於期望利用這些數據來執行什麼任務,及其質量和精度處於何種級別有一個非常清晰的了解。這種方法將使得企業的項目能夠尋找到正確的數據來源和利益相關者,以更好地評估這些數據信息的價值和影響,進而讓您決定如何最好地管理這些數據信息。更高的質量和精度則要求更強大的數據管理和監督能力。
隨著您企業大數據項目的日趨成熟,考慮建立一套按照數據質量或精確度分類的辦法,這將使得數據用戶得以更好的了解他們所使用的是什麼,並相應地調整自己的期望值。例如,您可以使用白色、藍色或金色來分別代表原始數據、清理過的數據,經過驗證可以有針對性的支持分析和使用的數據。有些企業甚至進一步完善了這一分類方法:將數據從1到5進行分類,其中1是原始數據,而5是便於理解,經過整理的、有組織的數據。
4、將對非結構化的內容的管理納入到您企業的數據管理能力。
非結構化數據一直是企業業務運營的一部分,但既然現在我們已經有了更好的技術來探索,分析和這些非結構化的內容,進而幫助改善業務流程和工業務洞察,所以我們最終將其正式納入我們的數據管理是非常重要的。大多數企業目前都被困在了這一步驟。
資料庫中基本的、非結構化的數據是以評論的形式或者自由的形式存在的,其至少是資料庫的一部分,應該被納入到數據管理。但挖掘這些數據信息則是非常難的。
數字數據存儲在傳統的結構化資料庫和業務流程外,很少有許多的治理范圍分組和數據管理的實現,除了當其被看作是一個技術問題時。一般來說,除了嚴格遵守相關的安全政策,今天的企業尚未對其進行真正有效的管理。當您的企業開始大跨步實現了大數據項目之後,您會發現這一類型的數據信息迅速進入了您需要管理的范疇,其輸出會影響您企業的商業智能解決方案或者甚至是您企業的業務活動。積極的考慮將這些數據納入到您企業的數據管理功能的范圍,並明確企業的所有權,並記錄好這些數據信息的諸如如何使用、信息來源等等資料。
不要採取「容易的輕松路線」,單純依靠大數據技術是您企業唯一正式的非結構化數據管理的過程。隨著時間的推移,企業將收集越來越多的非結構化數據,請務必搞清楚哪些數據是好的,哪些是壞的,他們分別來自何處,以及其使用是否一致,將變得越來越重要,甚至在其生命周期使用這個數據都是至關重要的。
要保持這種清晰,您可以使用大數據和其他工具,以了解您企業所收集的數據信息,確定其有怎樣的價值,需要怎樣的管理,這是至關重要的。大多數進入您企業的大數據系統的非結構化數據都已經經過一些監控了,但通常是作為一個BLOB(binarylargeobject)二進制大對象和非結構化的形式進行的。隨著您的企業不斷的在您的業務流程中「發掘」出這一類型的數據,其變得更加精確和有價值。其可能還具有額外的特點,符合安全,隱私或法律和法規的元素要求。最終,這些數據塊可以成為新的數據元素或添加到現有的數據,但您必須有元數據對其進行描述和管理,以便盡可能最有效地利用這些數據。
5、正式在生產環境運行之前進行測試。
如果您的企業做的是一次性的分析或完整的一次性的試點,這可能並不適用於您的企業,但對大多數企業來說,他們最初的大數據工作將迅速發展,他們找到一個可持續利用他們已經挖掘出的極具價值的信息的需求。這意味著需要在您的沙箱環境中進行測試,然後才正式的在您的生產環境運。
❹ 大數據怎麼實現的
搭建大數據分析平台的工作是循序漸進的,不同公司要根據自身所處階段選擇合適的平台形態,沒有必要過分追求平台的分析深度和服務屬性,關鍵是能解決當下的問題。大數據分析平台是對大數據時代的數據分析產品(或稱作模塊)的泛稱,諸如業務報表、OLAP應用、BI工具等都屬於大數據分析平台的范疇。與用戶行為分析平台相比,其分析維度更集中在核心業務數據,特別是對於一些非純線上業務的領域,例如線上電商、線下零售、物流、金融等行業。而用戶行為分析平台會更集中分析與用戶及用戶行為相關的數據。企業目前實現大數據分析平台的方法主要有三種:(1)采購第三方相關數據產品例如Tableau、Growing IO、神策、中琛魔方等。此類產品能幫助企業迅速搭建數據分析環境,不少第三方廠商還會提供專業的技術支持團隊。但選擇此方法,在統計數據的廣度、深度和准確性上可能都有所局限。例如某些主打無埋點技術的產品,只能統計到頁面上的一些通用數據。隨著企業數據化運營程度的加深,這類產品可能會力不從心。該方案適合缺少研發資源、數據運營初中期的企業。一般一些創業公司、小微企業可能會選擇此方案。(2)利用開源產品搭建大數據分析平台對於有一定開發能力的團隊,可以採用該方式快速且低成本地搭建起可用的大數據分析平台。該方案的關鍵是對開源產品的選擇,選擇正確的框架,在後續的擴展過程中會逐步體現出優勢。而如果需要根據業務做一些自定義的開發,最後還是繞不過對源碼的修改。(3)完全自建大數據分析平台對於中大型公司,在具備足夠研發實力的情況下,通常還是會自己開發相關的數據產品。自建平台的優勢是不言而喻的,企業可以完全根據自身業務需要定製開發,能夠對業務需求進行最大化的滿足。對於平台型業務,開發此類產品也可以進行對外的商業化,為平台上的B端客戶服務。例如淘寶官方推出的生意參謀就是這樣一款成熟的商用數據分析產品,且與淘寶業務和平台優勢有非常強的結合。在搭建大數據分析平台之前,要先明確業務需求場景以及用戶的需求,通過大數據分析平台,想要得到哪些有價值的信息,需要接入的數據有哪些,明確基於場景業務需求的大數據平台要具備的基本的功能,來決定平台搭建過程中使用的大數據處理工具和框架。
❺ 企業想要成功布局大數據的七大關鍵步驟
企業想要成功布局大數據的七大關鍵步驟
在這個大數據已經成為市場一個美味的「大蛋糕」的今日,大多數企業都很想要分得一塊。大多數企業正做好了布局大數據的准備,那麼,該怎麼做才能成功去布局?
最近,電子科技大學教授,雲基地大數據實驗室合夥人周濤在接受采訪時提出,對於普通企業要通過修煉成為大數據企業,關鍵要做好7個步驟:
1.要實現數據化。企業要為此做好計劃,到底需要保存什麼樣的數據,以人為中心的數據還是以產品為中心,還是更關注企業運營,需要做好這樣的計劃,然後再將企業生產經營中的數據保存下來,即便是現在看來沒什麼用的數據,未來也可能產生巨大的價值。比如說像售樓處、體驗店客戶的來訪數據,就有必要完整的記錄下來。包括怎麼過來的,一個人來還是幾個人,有老人和小孩嗎,穿什麼樣的衣服等等,還有客戶的情緒,看了什麼,問了什麼問題,最後買了什麼東西,都是非常重要的數據。
另外,企業內部人力資源的各個方面也都可以記錄下來,這些可以進行挖掘和分析的數據。他舉例說,長虹公司在自己的生產線設置了很多感測器,監測溫度、濕度、震動、噪音、顆粒等等因素,希望了解到生產過程中哪些因素會對員工產生明顯影響。他們此前都認為溫度和顆粒可能對於員工操作和產品質量影響最大,但是事實上最終數據分析的結果,溫度是沒有什麼影響的,恆溫的控制對於生產效率和合格率的貢獻並不像想像中那麼大,反而是噪音對於員工情緒以及生產的影響非常重要。要成為大數據企業,第一步企必須要實現數據化。
2.企業要自己培養一些大數據理念,或者是小數據挖掘的團隊。做大數據,企業的規模不一樣,要求也不一樣。如果企業規模足夠大,比如說是電信運營商或者電力、銀行這樣的行業,可能會形成一個大數據的團隊。如果不是,比如說就是簡單的服務企業,那麼形成理念就可以了。現在我們認為比較好的數據科學家,也不是說就是特別擅長或適應網路,這樣的人不重要了,重要的是要有武器,什麼樣的問題來了知道怎麼解決。
關鍵我們認識是要培養四種理念:
(1)除了結構化數據以外還有文本、音頻、圖像、遙感、網路、行為軌跡、時間數據,這些數據怎麼處理,它存在的大挑戰是什麼。
(2)一定要懂預測,因為絕大部分的大數據應用回到預測中,預測裡面很多方法都是基準學習的,而基準學習目前最火的方向是集群學習。
(3)要走分布式存儲計算,這絕對不是說我知道給Hadoop 、Maprece、Hbase就夠了,關鍵問題是首先要知道怎麼樣去搭一個混合式的,你的數據來了,我到底是應該犧牲我的一致性還是犧牲操作性,大概的成本多少,哪些數據挖掘的重要演算法我要把他Hadoop、Maprece實現,哪些演算法要通過SPTA,可變邏輯治理是在硬體裡面,從而替代CPU、GPU。
(4)需要整個數據向外的發展,知道哪些數據可能在外部產生什麼樣的重要價值,或者外部的數據能夠在你的企業產生什麼樣的重要價值。企業應該培養出這四個能力,建立起企業數據挖掘的人才團隊。
3.企業一定要做好自己的外部數據儲備。我們都說「書到用時方恨少」,很多的企業,比如說像服裝銷售這樣的傳統行業,我要進的貨在淘寶、天貓上賣的怎麼樣?在淘寶、天貓哪一個店鋪怎麼樣?它的競爭品牌是什麼樣售價,怎麼樣銷售的?對於這樣一些數據,如果到需要的時候才去找,往往都來不及了。同樣的道理。比如銀行給中小企業發放貸款的時候,希望了解到它的用水、用電、生產、交通數據,例如通過攝像頭就能知道這個企業到底有多少車運行,這些數據可能對於中小企業發放貸款決策都很重要。但是當你要發貸款的時候,再去問已經沒有機會了,或者說成本太高了。我們建議,企業應該學會通過公共渠道或者數據交換的方法,根據自己的業務需求來量身定做自己的外部數據和戰略數據。
4.企業要建設自己的大數據管理與應用平台。對於很多企業,做大數據並不是意味著要自己去建設數據中心。隨著雲計算和雲數據中心出現,使用外部數據中心的成本已經非常低了,數據存儲的費用也是在成倍的下降。但是,企業要做大數據,必須要在IT基礎設施方面具有比較好的數據處架構,要用大一些工具比如數據分布式存儲、Hadoop等等。很關鍵的企業不僅要具備一個數據中心的硬體,還要考慮和企業業務方向結合,不僅就是包括了數據的採集、資料庫架構,向上的分析模塊,再往上的API數據出口,以及橫向的一些業務模塊和出口這些東西。要做成企業的大數據管理應用平台,我們強調一定要從企業的業務出發,量體裁衣,企業首先必須要搞清楚自己的業務形態是什麼。
5.大企業一定要有數據偵測的能力,需要有創新思維的人隨時思考這些問題,比如企業佔有的數據到底在外部能夠產生什麼樣大的作用。就像我們經常拿雅昌藝術中心的例子,它存了很多藝術品的數據,所以最後它可以發布藝術指數。同樣國家電網也發布兩個指數,一個叫重工業用電指數,一個叫輕工業用電指數。淘寶網有它的CPI指數,還有很多企業的一些數據,實際上都可以發揮想像不到的價值。
6.一個大數據企業包括未來現代化企業,一定要有開放共享的態度。一方面需要企業把自己的很多問題社會化,另一方面企業要盡量去通過一些平等辦法,通過數據交換的方式互相共享形成數據化。
7.企業還要做好數據方面的戰略投資。我認為有三種比較先進的模式。
一種模式叫做產業鏈布局,比如說海爾、長虹可以投物聯網,對物聯網企業創新進行投入。比如說中信集團可以關注醫療,在這個方面尋找相關的數據應用。
第二個方面就是技術,你要知道哪些是硬技術創新,特別是在基礎術設施層面的,比如加速存儲,雲計算的一些技術,比如數據挖掘,垂直應用分析,這個方面集中了很多創新也可以形成很大的規模。
第三種模式是數據集方面的投資,我們知道阿里巴巴投資高德是為了數據,它投資新浪微博不僅是要投錢還要花錢買數據,所有這一切本質還是想把數據流動起來做更大的事情。這種投資就是集成數據,強調數據流動性。這些投資裡面有幾點是需要注意的,一是要去關注企業的數據價值,其次要關注早期的投資,去長期指引而不是短期追逐回報率,最後還要多關注傳統行業。
周濤教授提出,大數據的本質不在於數據量有多少,也不在於是否是異構的數據,而是在於數據是關聯的,整體的數據可以流動起來。他認為,跨領域關聯,通過一加一產生遠大於二的價值才是大數據的精髓。
當然,數據本身並不產生價值,只有通過大數據的分析去解決難題才是價值,而大數據對於企業營銷的作用是可大可小的,不過在這個把大數據作為概念的時代,企業還是要做好布局大數據的准備,向大數據企業修煉。
❻ 怎樣搭建企業大數據平台
步驟一:開展大數據咨詢
規劃合理的統籌規劃與科學的頂層設計是大數據建設和應用的基礎。通過大數據咨詢規劃服務,可以幫助企業明晰大數據建設的發展目標、重點任務和藍圖架構,並將藍圖架構的實現分解為可操作、可落地的實施路徑和行動計劃,有效指導企業大數據戰略的落地實施。
步驟二:強化組織制度保障
企業信息化領導小組是企業大數據建設的強有力保障。企業需要從項目啟動前就開始籌備組建以高層領導為核心的企業信息化領導小組。除了高層領導,還充分調動業務部門積極性,組織的執行層面由業務部門和IT部門共同組建,並確立決策層、管理層和執行層三級的項目組織機構,每個小組各司其職,完成項目的具體執行工作。
步驟三:建設企業大數據平台
基於大數據平台咨詢規劃的成果,進行大數據的建設和實施。由於大數據技術的復雜性,因此企業級大數據平台的建設不是一蹴而就,需循序漸進,分步實施,是一個持續迭代的工程,需本著開放、平等、協作、分享的互聯網精神,構建大數據平台生態圈,形成相互協同、相互促進的良好的態勢。
步驟四:進行大數據挖掘與分析
在企業級大數據平台的基礎上,進行大數據的挖掘與分析。隨著時代的發展,大數據挖掘與分析也會逐漸成為大數據技術的核心。大數據的價值體現在對大規模數據集合的智能處理方面,進而在大規模的數據中獲取有用的信息,要想逐步實現這個功能,就必須對數據進行分析和挖掘,通過進行數據分析得到的結果,應用於企業經營管理的各個領域。
步驟五:利用大數據進行輔助決策
通過大數據的分析,為企業領導提供輔助決策。利用大數據決策將成為企業決策的必然,系統通過提供一個開放的、動態的、以全方位數據深度融合為基礎的輔助決策環境,在適當的時機、以適當的方式提供指標、演算法、模型、數據、知識等各種決策資源,供決策者選擇,最大程度幫助企業決策者實現數據驅動的科學決策。
關於怎樣搭建企業大數據平台,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。