⑴ 學習數據分析需要哪些基礎
數據分析這個崗位可以說很寬泛很雜,從數據錄入員到行業分析師科學家都可以認為是數據分析,甚至一些搞數據挖掘、人工智慧的都可以包括到數據分析的范疇里,但是這些工作所做的事情卻相差甚遠,當然待遇也天壤之別。所以大家在應聘時不要只看崗位名稱,重要的是看看清崗位職責和要求。言歸正傳,咱們談談如何學習數據分析。
1、學科知識:從數據分析涉及到的專業知識點上看,主要是這些:
(1)統計學:參數檢驗、非參檢驗、回歸分析等
(2)數學:線性代數、微積分等
(3)社會學:主要是一些社會學量化統計的知識,如問卷調查與統計分析;還有就是一些社會學的知識,這些對於從事營銷類的數據分析人員比較有幫助
(4)經濟金融:如果是從事這個行業的數據分析人員,經濟金融知識是必須的,這里就不多說了
(5)計算機:從事數據分析工作的人必須了解你使用的數據是怎麼處理出來的,要了解資料庫的結構和基本原理,同時如果條件充足的話,你還能有足夠的能力從資料庫里提取你需要的數據(比如使用SQL進行查詢),這種提取數據分析原材料的能力是每個數據從業者必備的。此外,如果要想走的更遠,還要能掌握一些編程能力,從而借住一些專業的數據分析工具,幫助你完成工作。
……
好好學習,雖然累,但是要堅持!
2、軟體相關:從事數據分析方面的工作必備的工具是什麼
(1)數據分析報告類:Microsoft Office軟體、水晶易表等,如果連excel表格基本的處理操作都不會,連PPT報告都不會做,那我只好說離數據分析的崗位還差的很遠。現在的數據呈現不再單單只是表格的形式,而是更多需要以可視化圖表去展示你的數據結果,因為數據可視化軟體就不能少,BDP個人版、TABLUEA、Echart等這些必備的,就看你自己怎麼選了。
(2)專業數據分析軟體:Office並不是全部,要從在數據分析方面做的比較好,你必須會用(至少要了解)一些比較常用的專業數據分析軟體工具,比如SPSS、SAS、Matlab等等,這些軟體可以很好地幫助我們完成專業性的演算法或模型分析,還有高級的python、R等。
(3)資料庫:hive、hadoop、impala等資料庫相關的知識可以學習;
(3)輔助工具:比如思維導圖軟體(如MindManager、MindNode Pro等)也可以很好地幫助我們整理分析思路。
最重要的是:理論知識+軟體工具=數據分析基礎,最後要把這些數據分析基礎運用到實際的工作業務中,好好理解業務邏輯,真正用數據分析驅動網站運營、業務管理,真正發揮數據的價值
⑵ 學大數據需要什麼基礎
說到大數據,肯定少不了分析軟體,這應該是大數據工作的根基,但市面上很多各種分析軟體,如果不是過來人,真的很難找到適合自己或符合企業要求的。小編通過各大企業對大數據相關行業的崗位要求,總結了以下幾點:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
對於學習大數據,總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
當然,學習數學與應用數學、統計學、計算機科學與技術等理工科專業的人確實比文科生有著客觀的優勢,但能力大於專業,興趣才會決定你走得有多遠。畢竟數據分析不像編程那樣,需要你天天敲代碼,要學習好多的編程語言,數據分析更注重的是你的實操和業務能力。如今的軟體學習都是非常簡單便捷的,我們真正需要提升的是自己的邏輯思維能力,以及敏銳的洞察能力,還得有良好的溝通表述能力。這些都是和自身的努力有關,而不是單純憑借理工科背景就可以啃得下來的。相反這些能力更加傾向於文科生,畢竟好奇心、創造力也是一個人不可或缺的。
⑶ 數據分析和數據挖掘學要哪些專業知識
在學數據分析之前,我們首先要明確知識架構。一般來說,數據分析師需要的技能就是這些:需要掌握SQL資料庫的基本操作,同時掌握基本的數據管理。會用Excel和SQL做基本的數據提取、分析和展示;會用腳本語言進行數據分析,Python或者R;有獲取外部數據的能力加分,比如爬蟲;會基本的數據可視化技能,能撰寫數據報告;熟悉常用的數據挖掘演算法(數據分析演算法包括回歸分析、決策樹、分類、聚類方法等)。這些技能掌握了,就能夠入門數據分析師了。
數據挖掘需要的技能:1.需要理解主流機器學習演算法的原理和應用。2.需要熟悉至少一門編程語言如(Python、C、C++、Java、Delphi等)。3.需要理解資料庫原理,能夠熟練操作至少一種資料庫(Mysql、SQL、DB2、Oracle等),能夠明白MapRece的原理操作以及熟練使用Hadoop系列工具更好。
更多數據挖掘的信息,推薦咨詢CDA數據分析師的課程。CDA數據分析師認證的課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。點擊預約免費試聽課。
⑷ 數據挖掘主要涉及到哪些方面的知識
1. 工程能力
( 1 )編程基礎:需要掌握一大一小兩門語言,大的指 C++ 或者 Java ,小的指Python 或者 shell 腳本;需要掌握基本的資料庫語言;
建議:MySQL + python + C++ ;語言只是一種工具,看看語法就好;
推薦書籍:《C++ primer plus 》
( 2 )開發平台: Linux ;
建議:掌握常見的命令,掌握 Linux 下的源碼編譯原理;
推薦書籍:《Linux 私房菜》
( 3 )數據結構與演算法分析基礎:掌握常見的數據結構以及操作(線性表,隊,列,字元串,樹,圖等),掌握常見的計算機演算法(排序演算法,查找演算法,動態規劃,遞歸等);
建議:多敲代碼,多刷題;
推薦書籍:《大話數據結構》《劍指 offer 》
( 4 )海量數據處理平台: Hadoop ( mr 計算模型,java 開發)或者 Spark ( rdd 計算模型, scala開發),重點推薦後者;
建議:主要是會使用,有精力的話可以看看源碼了解集群調度機制之類的;
推薦書籍:《大數據 spark 企業級實戰》
2. 演算法能力
( 1 )數學基礎:概率論,數理統計,線性代數,隨機過程,最優化理論
建議:這些是必須要了解的,即使沒法做到基礎扎實,起碼也要掌握每門學科的理論體系,涉及到相應知識點時通過查閱資料可以做到無障礙理解;
( 2 )機器學習 / 深度學習:掌握 常見的機器學習模型(線性回歸,邏輯回歸, SVM ,感知機;決策樹,隨機森林, GBDT , XGBoost ;貝葉斯, KNN , K-means , EM 等);掌握常見的機器學習理論(過擬合問題,交叉驗證問題,模型選擇問題,模型融合問題等);掌握常見的深度學習模型( CNN ,RNN 等);
建議:這里的掌握指的是能夠熟悉推導公式並能知道模型的適用場景;
推薦書籍:《統計學習方法》《機器學習》《機器學習實戰》《 UFLDL 》
( 3 )自然語言處理:掌握常見的方法( tf-idf , word2vec ,LDA );
3. 業務經驗
( 1 )了解推薦以及計算廣告相關知識;
推薦書籍:《推薦系統實踐》《計算廣告》
( 2 )通過參加數據挖掘競賽熟悉相關業務場景,常見的比賽有 Kaggle ,阿里天池, datacastle 等。
⑸ 學習數據挖掘需要那些基礎知識
學習數據挖掘需要學習編程語言(Python、C、C++、Java、Delphi等),數據結構和演算法,操作系統和網路編程。
數據挖掘涉及的內容比較泛,機器學習、數據挖掘、人工智慧,這些知識大多是相通的。編程語言主要是C語言、C++和Java,。我首先這里可以學習C語言聖經《C程序設計語言》以及《C++ Primer》,數據結構和演算法推薦《數據結構與演算法分析(C語言描述)》。最好有機器學習,涉及到數據挖掘,自然語言處理和深度學習。數據挖掘主要是搜索排序,反作弊,個性化推薦,信用評價等;需要理解資料庫原理,能夠熟練操作至少一種資料庫(Mysql、SQL、DB2、Oracle等),明白MapRece的原理操作以及熟練使用Hadoop系列工具。
如果想提升關於數據挖掘方面的能力,這里推薦CDA數據分析師的相關課程,教你學企業需要的敏捷演算法建模能力,可以學到前沿且實用的技術,挖掘數據的魅力;課程中安排了Sklearn/LightGBM、Tensorflow/PyTorch、Transformer等工具的應用實現,並根據輸出的結果分析業務需求,為進行合理、有效的策略優化提供數據支撐點擊預約免費試聽課。
⑹ 學會用聚類演算法進行數據挖掘需要怎樣的數學基礎
會用聚類演算法進行數據挖掘需要線性代數, 變分演算,距離度量,距離矩陣等的數學知識基礎。
在數據科學中,我們可以通過聚類分析觀察使用聚類演算法後獲得一些有價值的信息,其中會涉及許多數學理論與實際計算。
主要有以下幾類演算法:
K-Means(k-平均或k-均值)是普遍知名度最高的一種聚類演算法,在許多有關數據科學和機器學習的課程中經常出現。
Mean shift演算法,又稱均值漂移演算法,這是一種基於核密度估計的爬山演算法,適用於聚類、圖像分割、跟蹤等
DBSCAN是一種基於密度的聚類演算法,它不需要輸入要劃分的聚類個數,對聚類的形狀沒有偏倚。
層次聚類會將每個數據點視為單個聚類,然後連續合並成對的聚類,直到所有聚類合並成包含所有數據點的單個聚類。
關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生具備從數據治理根源出發的思維,通過數字化工作方法來探查業務問題,通過近因分析、宏觀根因分析等手段,再選擇業務流程優化工具還是演算法工具,而非「遇到問題調演算法包」。點擊預約免費試聽課。