『壹』 數據分析工作的全部過程有幾個步驟
到底做到什麼程度才算是一個完整的分析?其實,數據分析是有標准模板的,一共分8步走,只要全部做完就可以了。
這八個步驟是:
提出問題 5.識別異常
尋找指標 6.問題歸因
現狀描述 7.走勢預測
梳理標准 8.結論建議
具體含義見下圖
『貳』 數據分析包含哪幾個步驟,主要內容是什麼
【導讀】隨著大數據,人工智慧化的普及,a幫助我們解決了很多問題,其主要表現在大數據分析上,那麼數據分析包含哪幾個步驟,主要內容是什麼呢?為了幫助大家更好的了解數據分析過程,下面是小編整理的數據分析過程主要有下面6個步驟,一起來看看吧!
以上就是小編為大家整理發布的關於「數據分析包含哪幾個步驟,主要內容是什麼?」,希望對大家有所幫助。更多相關內容,關注小編,持續更新。
『叄』 完整的數據分析包括哪些步驟
完整的數據分析主要包括了六大步驟,它們依次為:分析設計、數據收集、數據處理、數據分析、數據展現、報告撰寫等,所以也叫數據分析六步曲。
①分析設計
首先是明確數據分析目的,只有明確目的,數據分析才不會偏離方向,否則得出的數據分析結果不僅沒有指導意義,亦即目的引導。
②數據收集
數據收集是按照確定的數據分析框架,收集相關數據的過程,它為數據分析提供了素材和依據。
③數據處理
數據處理是指對採集到的數據進行加工整理,形成適合數據分析的樣式,保證數據的一致性和有效性。它是數據分析前必不可少的階段。
④數據分析
數據分析是指用適當的分析方法及工具,對收集來的數據進行分析,提取有價值的信息,形成有效結論的過程。
⑤數據展現
一般情況下,數據是通過表格和圖形的方式來呈現的,即用圖表說話。
常用的數據圖表包括餅圖、柱形圖、條形圖、折線圖、散點圖、雷達圖等,當然可以對這些圖表進一步整理加工,使之變為我們所需要的圖形,例如金字塔圖、矩陣圖、瀑布圖、漏斗圖、帕雷托圖等。
⑥報告撰寫
數據分析報告其實是對整個數據分析過程的一個總結與呈現。通過報告,把數據分析的起因、過程、結果及建議完整地呈現出來,以供決策者參考。所以數據分析報告是通過對數據全方位的科學分析來評估企業運營質量,為決策者提供科學、嚴謹的決策依據,以降低企業運營風險,提高企業核心競爭力。
『肆』 怎樣對數據進行分析—數據分析的六大步驟
時下的大數據時代與人工智慧熱潮,相信很多人都會對數據分析產生很多的興趣,其實數據分析師是Datician的一種,指的是不同行業中,專門從事行業數據收集,整理,分析,並依據數據做出行業研究、評估和預測的專業人員。
很多人學習過數據分析的知識,但是當真正接觸到項目的時候卻不知道怎樣去分析了,導致這樣的原因主要是沒有屬於自己的分析框架,沒有一個合理的分析步驟。那麼數據分析的步驟是什麼呢?比較讓大眾認可的數據分析步驟分為
六大步驟。只有我們有合理的分析框架時,面對一個數據分析的項目就不會無從下手了。
無論做什麼事情,首先我們做的時明確目的,數據分析也不例外。在我們進行一個數據分析的項目時,首先我們要思考一下為什麼要進展這個項目,進行數據分析要解決什麼問題,只有明確數據分析的目的,才不會走錯方向,否則得到的數據就沒有什麼指導意義。
明確好數據分析目的,梳理分析思路,並搭建分析框架,把分析目的分解成若干不同的分析要點,即如何具體開展數據分析,需要從那幾個角度進行分析,採用哪些分析指標(各類分析指標需合理搭配使用)。同時,確保分析框架的體系化和邏輯化,確定分析對象、分析方法、分析周期及預算,保證數據分析的結果符合此次分析的目的。
數據收集的按照確定的數據分析框架,收集相關數據的過程,它為數據分析提供了素材和依據。常見的數據收集方式主要有以下幾種
一般地我們收集過來的數據都是雜亂無章的,沒有什麼規律可言的,所以就需要對採集到的數據進行加工處理,形成合適的數據樣式,保證數據的一致性和有效性。一般在工作中數據處理會佔用我們大部分的時間
數據處理的基本目的是從大量的,雜亂無章的數據中抽取到對接下來數據分析有用的數據形式。常見的數據處理方式有 數據清洗、數據分組、數據檢索、數據抽取 等,使用的工具有 Excel、SQL、Python、R 語言等。
對數據整理完畢之後,就需要對數據進行綜合的分析。數據分析方式主要是使用適當的分析方法和工具,對收集來的數據進行分析,提取有價值的信息,形成有效結論的過程。
在確定數據分析思路的階段,就需要對公司業務、產品和分析工具、模型等都有一定的了解,這樣才能更好地駕馭數據,從容地進行分析和研究,常見的分析工具有 SPSS、SAS、Python、R語言 等,分析模型有 回歸、分類、聚類、關聯、預測 等。其實數據分析的重點不是採用什麼分析工具和模型而是找到合適的分析工具和模型,從中發現數據中含有的規律。
通過對數據的收集、整理、分析之後,隱藏的數據內部的關系和規律就會逐漸浮現出來,那麼通過什麼方式展現出這些關系和規律,才能讓別人一目瞭然。一般情況下,是通過表格和圖形的方式來呈現出來。多數情況下,人們通常願意接受圖形這樣數據展現方式,因為它能更加有效、直觀地傳遞出數據所要表達的觀點。
常用數據圖表 有餅圖、柱形圖、條形圖、折線圖、氣泡圖、散點圖、雷達圖、矩陣圖 等圖形,在使用圖形展現的情況下需要注意一下幾點:
當分析出來最終的結果之後,我們是知道這部分數據展現出來的意義,適用的場景。但是如果想讓更多人了解你分析出來的東西,讓你的分析成果為眾人所熟知,這時就需要一份完美的PPT報告,一個邏輯合理的故事。這樣的分析結果才是最完美的。
一份好的數據分析報告,首先需要有一個好的分析框架,並且圖文並茂,層次清晰,能夠讓閱讀者一目瞭然。結構清晰、主次分明可以使閱讀者正確理解報告內容;圖文並茂,可以令數據更加生動活潑,提高視覺沖擊力,有助於閱讀者更形象,直觀地看清楚問題和結論,從而產生思考。
數據分析的四大誤區
1、分析目的不明確,不能為了分析而分析 。只有明確目的才能更好的分析
2、缺乏對行業、公司業務的認知,分析結果偏離實際 。數據必須和業務結合才有意義,清楚所在行業的整體結構,對行業的上游和下游的經營情況有大致的了解,在根據業務當前的需要,制定發展計劃,歸類出需要整理的數據,同時,熟悉業務才能看到數據背後隱藏的信息。
3、為了方法而方法,為了工具而工具 。只要能解決問題的方法和工具就是好的方法和工具
4、數據本身是客觀的,但被解讀出來的數據是主觀的 。同樣的數據由不同的人分析很可能得出完全相反的結論,所以一定不能提前帶著觀點去分析
『伍』 數據分析工作流程有哪些
1、數據獲取
從字面的意思上講,就是獲取數據。數據獲取看似簡單,但是需要把握對問題的商業理解,轉化成數據問題來解決,直白點講就是需要哪些數據,從哪些角度來分析,界定問題後,再進行數據採集。此環節,需要數據分析師具備結構化的邏輯思維。
2、數據處理
數據的處理需要掌握有效率的工具,這些工具有很多,比如Excel、SQL等等,Excel及高端技能:基本操作、函數公式、數據透視表、VBA程序開發。
3、分析數據
分析數據往往需要各類統計分析模型,如關聯規則、聚類、分類、預測模型等等。因此,熟練掌握一些統計分析工具不可免。我們可學習SPSS,而SPSS不用編程,簡單易學。十分適合新手,同時經典挖掘軟體,需要編程。而R語言開源軟體,新流行,對非結構化數據處理效率上更高,需編程。
4、數據可視化
就目前而言,很多數據分析工具已經涵蓋了數據可視化部分,只需要把數據結果進行有效的呈現和演講匯報就可以了。你所做的前期一系列的工作展示給你的領導。
『陸』 數據分析的流程是什麼
1、明確分析的目的,提出問題。只有弄清楚了分析的目的是什麼,才能准確定位分析因子,提出有價值的問題,提供清晰的指引方向。
2、數據採集。收集原始數據,數據來源可能是豐富多樣的,一般有資料庫、互聯網、市場調查等。具體辦法可以通過加入“埋點”代碼,或者使用第三方的數據統計工具。
3、數據處理。對收集到的原始數據進行數據加工,主要包括數據清洗、數據分組、數據檢索、數據抽取等處理方法。
4、數據探索。通過探索式分析檢驗假設值的形成方式,在數據之中發現新的特徵,對整個數據集有個全面認識,以便後續選擇何種分析策略。
5、分析數據。數據整理完畢,就要對數據進行綜合分析和相關分析,需要對產品、業務、技術等了如指掌才行,常常用到分類、聚合等數據挖掘演算法。Excel是最簡單的數據分析工具,專業數據分析工具有R語言、Python等。
6、得到可視化結果。藉助可視化數據,能有效直觀地表述想要呈現的信息、觀點和建議,比如金字塔圖、矩陣圖、漏斗圖、帕累托圖等,同時也可以使用報告等形式與他人交流。