『壹』 數據分析怎麼學習呢需要學習什麼
想要學習數據分析,首先你要知道成為一名數據分析師所需要具備的技能:
數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。
而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。
分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。
編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。
當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。
對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。
邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。
數據可視化
數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。
對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。
協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。
通過了解數據分析需要具備的技能,學習的方向也就迎刃而解了。
對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。
『貳』 數據分析需要掌握哪些知識
數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。
而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。
當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。
對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。數據可視化數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。
對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。
『叄』 數據分析需要掌握些什麼知識
要想成為一名專業的數據分析師,就需要滿足數據分析師的職業要求。數據分析師的職業要求可以總結為以下幾個方面。
(1)掌握統計相關的數學知識
和統計相關的數學知識是數據分析師需要具備的基礎知識,數據分析師可以根據自己的能力和水平學習相關的統計學知識,初級數據分析師和高級數據分析師需要對統計學知識掌握的程度是不一樣的。
如果你是初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力就可以,如果了解常用的統計模型演算法那會是你的加分項。
對高級數據分析師來說,只了解基礎的統計學知識是不夠的。統計模型的相關知識是高級數據分析師必備的能力,最好對線性代數(主要是矩陣計算相關知識)也有一些了解。
「工欲善其事,必先利其器」,要成為一名合格的數據分析師,會使用數據分析工具非常重要。這里所說的工具也就是數據分析軟體,例如Excel、SPSS、SAS等。由於Excel通用性強、使用門檻低、功能強大,所以深受數據分析人員的喜愛,也是數據分析師必須掌握的一個數據分析工具,本書所涉及的數據分析內容均使用Excel進行講解。當然,數據分析師也可以根據自己的能力選擇性的掌握SPSS和SAS等進行高級數據分析的工具。
對於初級數據分析師來說,掌握Excel是硬性要求,必須能熟練使用數據透視表和公式,會使用VBA(一種宏語言)的話則是你的加分項。
對於高級數據分析師來說,使用數據分析工具是核心能力。VBA是必備技能,至少熟練使用SPSS/SAS/R其中的一種,可以根據具體情況選擇掌握其他分析工具(MATLAB)。
不過,電商數據分析人員除了掌握Excel、SPSS和SAS等本地軟體外,還需要掌握像生意參謀、京東商智等專門的電商數據獲取和分析工具。
(3)理解業務
對業務的理解是數據分析師所有工作的基礎,無論是數據獲取方案、指標的選取還是得出最終結論,都依賴於數據分析師對業務本身的理解。
但是要學習和掌握業務知識需要長時間的積累,成為業務專家非常不易,數據分析師則是在業務專家之上的更深層次的思考和總結,否則在數據分析工作中誰指導誰都是個問題。
學習業務知識的方法有很多,以前的分析報告和取數案例都可以拿來研究,當然這也是一個循序漸進的過程。
(4)掌握數據分析方法
做數據分析一定要了解數據分析的方法、應用場景、使用過程以及優缺點,能夠根據具體情況在實際工作中靈活應用,確保數據分析工作能夠有效開展。
基本的數據分析方法有:平均分析法、分組分析法、對比分析法、交叉分析法、結構分析法、綜合評價分析法、矩陣關聯分析法等。
高級的數據分析方法包括:聚類分析法、回歸分析法、類別分析法、因子分析法、對應分析法等。在做數據分析時,應該在明確目的的前提下選擇適合的分析方法。
(5)了解基本設計原則
數據分析師需要通過圖表把自己的分析結論和觀點展現出來,根據相關的設計原則對圖表進行調整,可以使數據分析結果一目瞭然。
『肆』 學習數據分析需要掌握哪些知識
具有數理統計,經濟學,資料庫原理以及相關知識;能熟練使用excel、spss、quanvert、sas等統計軟體。
工作能力: 嚴謹的邏輯思維能力、學習能力、言語表達能力、管理能力
工作態度:積極主動、工作認真、工作嚴謹
具體要求:
1、根據數據分析方案進行數據分析,在既定時間內提交給市場研究人員;
2、能進行較高級的數據統計分析;
3、公司錄入人員的管理和業績考核;以及對編碼人員的行業知識和問卷結構的培訓;
4、錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對;
其他方面的要求:
1. 持證上崗。
2. 熱愛本職工作,具有高度的責任心和忘我的工作精神,愛崗敬業,工作認真細致,能認真完成公司交給的各項工作任務。
3. 要求掌握較深的業務知識和計算機應用知識,能用行業各種應用軟體進行各種數據分析和綜合數據處理,加工成有用的信息提供領導進行決策;能配合系統管理員進行計算機網路維護及管理。
4. 負責本公司計算機信息網絡數據的收集、傳遞(主要是上報)和管理工作,對各網點上報的數據和本機房傳遞的信息數據,要做好詳細的「數據傳遞紀錄」,對未按時間要求漏報和數據有誤的網點要及時督促,每月將各經營站、點數據上報情況通報一次;負責各類數據的整理、匯總和分析處理工作,及時向本公司領導及有關部門上報信息數據,做好相關紀錄;負責本公司網路信息數據的安全管理,及時做好各類數據及報表的備份工作,做好歸檔、保管工作,做好信息數據的保密工作,嚴禁向未授權單位、部門及個人提供各類信息數據;負責機房文件收發、歸檔和保管工作。
5. 遵守特定的工作時間:必須等各網點數據傳輸完畢核對無誤後才能下班。
關於數據分析員:
數據分析員是根據數據分析方案進行數據分析的人員,能進行較高級的數據統計分析,負責公司錄入人員的管理和業績考核,以及對編碼人員的行業知識和問卷結構的培訓,和錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對等職責。
『伍』 數據分析需要掌握些什麼知識
數據分析需要掌握的知識:
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。
2、分析工具
對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
3、分析思維
比如結構化思維、思維導圖、或網路腦圖、麥肯錫式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、資料庫知識
大數據大數據,就是數據量很多,Excel就解決不了這么大數據量的時候,就得使用資料庫。如果是關系型資料庫,比如Oracle、mysql、sqlserver等等,你還得要學習使用SQL語句,篩選排序,匯總等等。非關系型資料庫也得要學習,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起碼常用的了解一兩個,比如Hbase,Mongodb,redis等。
5、開發工具及環境
比如:Linux OS、Hadoop(存儲HDFS,計算Yarn)、Spark、或另外一些中間件。目前用得多的開發工具Java、python等等語言工具。
『陸』 數據分析要學習哪些
學什麼?
數據分析要學的內容大致分為6個板塊,分別是:
Excel
精通Excel分析工具,掌握Excel經典函數,准確快速地完成數據清洗,利用Excel數據透視及可視化,可以透過現象看本質。
MySQL
理解MySQL資料庫相關概念及存儲原理,掌握SQL基本的增、刪、改、查等語法掌握資料庫性能調優策略,熟練使用SQL進行數據清洗與數據規范化。
BI商業智能工具
了解商業智能的核心價值,精通FineReport、FineBI,快速挖掘數據價值,掌握行業場景應用。
Python
學習Python基本編程語言知識,了解Python程序的計算機運行原理,能夠使用Python編程處理工作中的重復性工作。 掌握網路數據抓取技術,Python資料庫應用開發,實現Python數據可視化操作,提高數據收集和數據分析能力。 掌握Python數據分析處理基礎庫,具有應用Python語言解決數據分析中實際問題能力。
數據分析思維與理論
掌握微積分、線性代數、概率論、參數估計、假設檢驗、方差分析等數理統計基礎 掌握基本的數學、統計學知識,學習數據運營方法論、機器學習夯實基礎,提升數據敏感性,建立數據思維和數據素養。
掌握如何撰寫行業分析報告和數據分析項目流程,能夠獨立完成數據分析項目。 掌握常見的數據運營方法如AARRR、漏斗、ABTset、描述性統計分析、相關分析、指數系統搭建等,培養利用多種數據分析方法解決實際工作問題能力。
機器學習
掌握機器學習常用經典演算法原理及sklearn代碼的實現、機器學習演算法的選取、調優及模型訓練、神經網路的特點及原理,增加個人核心競爭力,擁有能夠用相關數據挖掘演算法為解決實際問題能力;奠定人工智慧演算法入門基礎。
如何學?
至少花三個月掌握技術
「磨刀不誤砍柴工」,要想從為「工人」,甚至熟悉工,也需要很多技能,因為怎麼說數據分析師也是技術工種。我覺得至少你要花3個月時間來學習一些最基礎的知識。
花1個月學習資料庫知識及基礎的統計學知識。
花1~2個月學習最基礎的數據分析軟體操作。
花1個月時間進行時間項目操作及業務練習
數據分析入門容易提高難,題主目前處於初級階段,可以通過自學觀看視頻,或者系統培訓來提高自己,已工作來說,接受系統培訓會更加快速,更推薦跟著課程系統性的學習,搭建好邏輯框架。