① 大數據專業主要學什麼
要想學習大數據需要掌握以下幾個基本內容:
第一:計算機基礎知識。計算機基礎知識對於學習大數據技術是非常重要的,其中操作系統、編程語言和資料庫這三方面知識是一定要學習的。編程語言可以從Python開始學起,而且如果未來要從事專業的大數據開發,也可以從Java開始學起。計算機基礎知識的學習具有一定的難度,學習過程中要重視實驗的作用。
第二:數學和統計學基礎知識。大數據技術體系的核心目的是「數據價值化」,數據價值化的過程一定離不開數據分析,所以作為數據分析基礎的數學和統計學知識就比較重要了。數學和統計學基礎對於大數據從業者未來的成長空間有比較重要的影響,所以一定要重視這兩個方面知識的學習。
第三:大數據平台基礎。大數據開發和大數據分析都離不開大數據平台的支撐,大數據平台涉及到分布式存儲和分布式計算等基礎性功能,掌握大數據平台也會對於大數據技術體系形成較深的認知程度。對於初學者來說,可以從Hadoop和Spark開始學起。
② 大數據技術與應用學習內容有哪些
大數據技術與應用需要學習Hadoop實用技術、數據挖掘、機器學習、數據統計分析、高等數學等內容。在“大數據”背景之下,精通“大數據”的專業人才將成為企業最重要的業務角色,“大數據”從業人員薪酬持續增長,人才缺口巨大,就業前景十分可觀。
大數據技術專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等,知識結構是二專多能復合的跨界人才(有專業知識、有數據思維)。
以中國人民大學為例:
基礎課程:數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐。
必修課:離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析。
選修課:數據科學演算法導論、數據科學專題、數據科學實踐、互聯網實用開發技術、抽樣技術、統計學習、回歸分析、隨機過程。
③ 大數據技術與應用專業學什麼的 有哪些課程
大數據技術與應用作為高校計算機類專業,學習的課程包括面向對象程序設計、Hadoop實用技術、數據挖掘、機器學習、數據統計分析等。
面向對象程序設計、Hadoop實用技術、數據挖掘、機器學習、數據統計分析、高等數學、Python編程、JAVA編程、資料庫技術、Web開發、Linux操作系統、大數據平台搭建及運維、大數據應用開發、可視化設計與開發等。
大數據技術被滲透到社會的方方面面,醫療衛生、商業分析、國家安全、食品安全、金融安全等方面。2014年,從大數據作為國家重要的戰略資源和加快實現創新發展的高度,在全社會形成「用數據來說話、用數據來管理、用數據來決策、用數據來創新」的文化氛圍與時代特徵。大數據科學將成為計算機科學、人工智慧技術(虛擬現實、商業機器人、自動駕駛、全能的自然語言處理)、數字經濟及商業、物聯網應用、還有各個人文社科領域發展的核心。
大數據技術與應用的前景和方向:
1、大數據系統研發工程師
該專業人才負責大數據系統研發,包括大規模非結構化數據業務模型構建、大數據存儲、資料庫構設、優化資料庫構架、解決資料庫中心設計等。
2、大數據應用開發工程師
此類人才負責搭建大數據應用平台以及開發分析應用程序,他們必須熟悉工具或演算法、編程、優化以及部署不同的MapRece,他們研發各種基於大數據技術的應用程序及行業解決方案。其中,ETL開發者是很搶手的人才。
3、大數據分析師
此類人才主要從事數據挖掘工作,運用演算法來解決和分析問題,讓數據顯露出真相,同時,他們還推動數據解決方案的不斷更新。