導航:首頁 > 數據處理 > 麥當勞如何測算大數據

麥當勞如何測算大數據

發布時間:2023-07-20 18:55:12

① 麥當勞推出的「1+1=12元」套餐,是如何盈利的

麥當勞推出的“1+1=12”套餐實行的是薄利多銷的銷售手段,對比麥當勞其他組合套餐動則三十幾、四十幾的價錢,12塊錢真的很劃算,所以有不少人去麥當勞都是奔著“1+1=12”套餐去的。“1+1=12”套餐看起來只有兩個選擇,但是漢堡、小吃、甜品全部都包括在裡面了。如果想要吃的飽一點就可以選擇其中的雙層吉士漢堡再搭配一個薯條,或者麥香雞漢堡搭配一個香芋派也是不錯的選擇,套餐里還有飲品可供購買,滿足了不同消費者的購買需求。自從“1+1=12”套餐推出後,麥當勞的銷售量就越來越好。

麥當勞這個套餐真的很不錯,希望各大快餐品牌都能像麥當勞學習學習。

大數據選址是如何實現的

大數據選址為零售業創業者獲得了深刻、全面的洞察能力,並提供了前所未有的空間與潛力。
何為大數據選址?
大數據時代下的精準選址是指通過大數據進行整合分析,獲取用戶的喜好和行為需求,對商圈消費群體的購買力進行分析,找出適合店面的絕佳位置。
大數據精準選址的核心可以概括為幾大關鍵詞:用戶、需求、峰值以及熱力分布。
以往的店面選址方式,是先根據當地的城市,對城市商圈、人口流動量、周圍的小區、以及實際住戶量等等, 做出詳細的對比和考察。然後再通過自身的經濟情況,選出一個自己能夠承擔得了,且地段好的店面位置。
而大數據選址,則為店面選址制定了更加詳細周密的計劃,將選址細化為兩個流程。
第一步先鎖定商圈,選址系統內有著全國熱力值分布的整合數據,系統根據加盟商提供的區域,根據外賣峰值的數據進行按比例分成,通過區域內外賣的需求量鎖定商圈。
根據外賣峰值鎖定商圈是有一定的科學依據,據研究發現,人們在追求高效率的生活中,存在一個就近原則。在食客選擇外賣的時候,無論是在配送時間或者是距離,都是優先考慮到的問題。
外賣峰值高的商圈有著大量的消費群體,也就蘊含著巨大的商機,而用外賣反襯堂食,在日常營業中有效的引流,更能刺激消費。
在鎖定好商圈以後,第二步就是確定店面的位置了,營運師傅會親自上門進行考察,對鎖定的商圈進行分析。
根據不同項目所針對的消費群體以及加盟商自身的經濟狀況,選出一個客流量旺盛且地段好的店面位置。
開啟餐飲作為最早一批大數據選址系統的嘗試者,在8月份正式全面上線,上線一月之內就受到其合作商的一致好評,幫助了加盟商快速精確地確定店面,縮短了開業前的准備時間。實踐證明,大數據選址系統確確實實存在著優越性!
大數據選址系統之所以受到合作商的關注,是因為他們深知選址的重要性。對開店創業者來說,選址關系著店鋪的發展前途,關系著店鋪經營目標的實現,關系著市場的火爆程度,還關系著顧客需求的滿足。可以說,做好了選址,開店創業就成功了一半。
阿拉丁智店「慧選址」在國內獨家實現了店鋪選址相關所有權威數據源的集成和整合。
數據方面,基於三大運營商15億去標識化的手機信令數據、BAT網民上網和搜索特徵數據、全國銀行卡消費數據,以及全國寫字樓數據、小區數據和全量POI數據,阿拉丁智店「慧選址」實現了任選地理區域全量用戶全時段、全方位覆蓋。通過3700個用戶標簽,可以精準篩選和鎖定目標客群。目前,我們日處理5480億條上網記錄信息、670億位置記錄信息,成功識別4200個手機品牌、20萬個互聯網產品、7000餘款APP、10.5萬個終端型號和4億個URL。
選址演算法和模型方面,我們通過核密度模型、空間插值模型、ODPA模型、力導向布局模型、商圈分析模型、價值因素模型等經典演算法和模型的開發,為零售企業的選址提供了智能化保障。
目前,阿拉丁智店已經為麥當勞、星巴克、工商銀行、武漢某知名連鎖超市、中國福彩、殘聯等上千家政府機構和企業提供了智能選址服務,取得了明顯收益和效果,受到客戶的高度評價。

③ 什麼是大數據時代

世界包含的多得難以想像的數字化信息變得更多更快……從商業到科學,從政府到藝術,這種影響無處不在。科學家和計算機工程師們給這種現象創造了一個新名詞:「大數據」。大數據時代什麼意思?大數據概念什麼意思?大數據分析什麼意思?所謂大數據,那到底什麼是大數據,他的來源在哪裡,定義究竟是什麼呢?

七:最後北京開運聯合給您總結一下

不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。

1、從大數據的價值鏈條來分析,存在三種模式:

1)手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。

2)沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。

3)既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。

2、未來在大數據領域最具有價值的是兩種事物:

1)擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;

2)還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。

大數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於數據的應用需求和應用水平進入新的階段。

④ 大數據如何與零售業結合 在實戰中應用

大數據如何與零售業結合 在實戰中應用

一、「大數據」的商業價值

1、對顧客群體細分

「大數據」可以對顧客群體細分,然後對每個群體量體裁衣般的採取獨特的行動。瞄準特定的顧客群體來進行營銷和服務是商家一直以來的追求。雲存儲的海量數據和「大數據」的分析技術使得對消費者的實時和極端的細分有了成本效率極高的可能。

2、模擬實境

運用「大數據」模擬實境,發掘新的需求和提高投入的回報率。現在越來越多的產品中都裝有感測器,汽車和智能手機的普及使得可收集數據呈現爆炸性增長。Blog、Twitter、Facebook和微博等社交網路也在產生著海量的數據。

雲計算和「大數據」分析技術使得商家可以在成本效率較高的情況下,實時地把這些數據連同交易行為的數據進行儲存和分析。交易過程、產品使用和人類行為都可以數據化。「大數據」技術可以把這些數據整合起來進行數據挖掘,從而在某些情況下通過模型模擬來判斷不同變數(比如不同地區不同促銷方案)的情況下何種方案投入回報最高。

3、提高投入回報率

提高「大數據」成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。「大數據」能力強的部門可以通過雲計算、互聯網和內部搜索引擎把」大數據」成果和「大數據」能力比較薄弱的部門分享,幫助他們利用「大數據」創造商業價值。

4、數據存儲空間出租

企業和個人有著海量信息存儲的需求,只有將數據妥善存儲,才有可能進一步挖掘其潛在價值。具體而言,這塊業務模式又可以細分為針對個人文件存儲和針對企業用戶兩大類。主要是通過易於使用的API,用戶可以方便地將各種數據對象放在雲端,然後再像使用水、電一樣按用量收費。目前已有多個公司推出相應服務,如亞馬遜、網易、諾基亞等。運營商也推出了相應的服務,如中國移動的彩雲業務。

5、管理客戶關系

客戶管理應用的目的是根據客戶的屬性(包括自然屬性和行為屬性),從不同角度深層次分析客戶、了解客戶,以此增加新的客戶、提高客戶的忠誠度、降低客戶流失率、提高客戶消費等。 對中小客戶來說,專門的CRM顯然大而貴。不少中小商家將飛信作為初級CRM來使用。比如把老客戶加到飛信群里,在群朋友圈裡發布新產品預告、特價銷售通知,完成售前售後服務等。

6、個性化精準推薦

在運營商內部,根據用戶喜好推薦各類業務或應用是常見的,比如應用商店軟體推薦、IPTV視頻節目推薦等,而通過關聯演算法、文本摘要抽取、情感分析等智能分析演算法後,可以將之延伸到商用化服務,利用數據挖掘技術幫助客戶進行精準營銷,今後盈利可以來自於客戶增值部分的分成。

以日常的「垃圾簡訊」為例,信息並不都是「垃圾」,因為收到的人並不需要而被視為垃圾。通過用戶行為數據進行分析後,可以給需要的人發送需要的信息,這樣「垃圾簡訊」就成了有價值的信息。在日本的麥當勞,用戶在手機上下載優惠券,再去餐廳用運營商DoCoMo的手機錢包優惠支付。運營商和麥當勞搜集相關消費信息,例如經常買什麼漢堡,去哪個店消費,消費頻次多少,然後精準推送優惠券給用戶。

7、數據搜索

數據搜索是一個並不新鮮的應用,隨著「大數據」時代的到來,實時性、全范圍搜索的需求也就變得越來越強烈。我們需要能搜索各種社交網路、用戶行為等數據。其商業應用價值是將實時的數據處理與分析和廣告聯系起來,即實時廣告業務和應用內移動廣告的社交服務。

運營商掌握的用戶網上行為信息,使得所獲取的數據「具備更全面維度」,更具商業價值。典型應用如中國移動的「盤古搜索」。

二、「大數據」與零售業的結合運用

對於數據的使用,許多實體零售商同樣表示非常重視,他們對企業積累的數據進行了各種預測和分析。然而,對具體的銷售業務來說,往往存在理想與現實的糾結,前不久市場中一家知名的服裝零售企業一方面在宣傳盈利上市的同時,一方面曝出有近10億元的庫存。國內很多零售企業都知道「大數據」應用的好處,但他們一旦將「大數據」的應用結合到自己的企業經營中時,便會出現與目前經營有非常大的不適應問題,如此導致許多企業對此都持非常謹慎的態度。

1、將零售策略與「大數據」技術進行結合

零售企業談的「大數據」的最大價值,是在零售策略上與「大數據」技術進行結合,最大程度地編制前置性的零售策略,確保銷售計劃的實現。「大數據」講究四個「V」:一是數據體量大(Volume);二是數據類型復雜(Variety),多涉及到各種結構性與非結構性的;三是價值密度低(Value),這和體量大是相對應的;四是數據更新與處理速度快(Velocity)。

根據這些特性主動地在業務數據產生的同時做出相應的策略應對,會為企業贏得更多的時間和市場策略調整空間。這類似於大江大河的洪峰預警,上游的洪峰出現什麼狀況,下游要做什麼樣的應對。數據用到這一層面上,才具有直接的業務價值,這不是那種銷量同期比、環比、銷售計劃比數據能指導業務的價值能相比的。例如一家涉足線上業務的實體零售商,在一組貨品的15分鍾促銷時間內,往往准備著3套應變策略,以確保貨品能夠按計劃賣出。

在實體商業領域,有許多關於數據與營銷的案例。一個較早的版本就是美國沃爾瑪啤酒和尿布的數據關系。原來,美國的婦女在家照顧孩子,所以她們會囑咐丈夫在下班回家的路上為孩子買尿布,而丈夫在買尿布的同時又會順手購買自己愛喝的啤酒。

當分析師了解到啤酒和尿布銷量存在正相關關系、並進一步分析的時候,發現了這樣的購買情境,於是將這兩種屬於不同門類的商品擺在一起。這個發現為商家帶來了新的銷售組合。當然,即使再多的零售連鎖企業知道這個故事,也極少從平時銷售中能發現這樣的組合,哪怕是牽強附會的。

所以,零售策略設計是零售業「大數據」價值最大的地方,也是「大數據」可以直接為其提供支持的業務。

2、零售企業對「大數據」應保持正確態度

企業的領導者首先要重視「大數據」的發展、重視企業的數據中心,把收集顧客數據作為企業營銷運營的第一目標;第二,對企業內部人員進行培訓及建立收集數據的軟硬體機制;第三,以業務需求為准則,確定哪些數據是需要收集的;第四,確認在企業已有的數據基礎上或者未來方向前提下,如何達成前三項目標的基礎建設方案。

在這些IT基礎工作需要企業有實實在在的投入和建設規范的信息化團隊,作為中國商業最大的一分子——中小微型零售企業似乎是不可能也沒有足夠的能力來面對這樣一場變化的。

大中型零售商因為本身業務及利潤的積淀,已經能夠承擔這樣一場需求趨勢的需要成本。中小微型企業還處於快速發展過程中,如果也如同大中型企業進行全方面的投入,將很快會被新型的IT工具拖垮或者遭受重創。

但這並不意味著中小零售企業沒有機會,實際上IT的發展為所有的企業都提供了平等的選擇,雲計算的廣泛應用即是對這樣一場變革帶來的臨時禮物。

作為中小微型零售企業,完全不必考慮自己建設一套「大數據」的IT系統,他們從精力、成本、能力上來說都不適合,因此此類企業可以將企業的IT建設外包給適合的服務商,企業本身的所有精力可以投入到對商圈的開發上。

目前,一些IT軟體開發運營商也已經針對傳統零售企業推出了雲服務的基礎平台,為中小微型商業企業提供了大型企業和超大型企業同樣的基礎環境及系統架構,小企業只需清晰地規劃出自己的目標和適合的步驟,使用雲平台按需付費即可,大可不必進行巨大的初始投入和不可預測的運行成本。

三、「大數據」在零售企業實戰中的應用

1、Target

最早關於「大數據」的故事發生在美國第二大的超市塔吉特百貨(Target)。孕婦對於零售商來說是個含金量很高的顧客群體。但是他們一般會去專門的孕婦商店而不是在Target購買孕期用品。人們一提起Target,往往想到的都是清潔用品、襪子和手紙之類的日常生活用品,卻忽視了Target有孕婦需要的一切。為此,Target的市場營銷人員求助於Target的顧客數據分析部要求建立一個模型,在孕婦第2個妊娠期就把她們給確認出來。在美國出生記錄是公開的,等孩子出生了,新生兒母親就會被鋪天蓋地的產品優惠廣告包圍,因此必須趕在孕婦第2個妊娠期行動起來。如果Target能夠趕在所有零售商之前知道哪位顧客懷孕了,市場營銷部門就可以早早的給他們發出量身定製的孕婦優惠廣告,早早圈定寶貴的顧客資源。

如何能夠准確地判斷哪位顧客懷孕? Target想到公司有一個迎嬰聚會(baby shower)的登記表,開始對這些登記表裡的顧客的消費數據進行建模分析,不久就發現了許多非常有用的數據模式。比如模型發現,許多孕婦在第2個妊娠期的開始會買許多大包裝的無香味護手霜;在懷孕的最初20周大量購買補充鈣、鎂、鋅的善存片之類的保健品。最後Target選出了25種典型商品的消費數據構建了「懷孕預測指數」,通過這個指數,Target能夠在很小的誤差范圍內預測到顧客的懷孕情況,因此Target就能早早地把孕婦優惠廣告寄發給顧客。

為了不讓顧客覺得商家侵犯了自己的隱私,Target把孕婦用品的優惠廣告夾雜在其他一大堆與懷孕不相關的商品優惠廣告當中。

根據這個「大數據」模型,Target制訂了全新的廣告營銷方案,結果Target的孕期用品銷售呈現了爆炸性的增長。Target的「大數據」分析技術從孕婦這個細分顧客群開始向其他各種細分客戶群推廣,從Target使用「大數據」的2002年到2010年間,Target的銷售額從440億美元增長到了670億美元。

2、ZARA

ZARA平均每件服裝價格只有LVHM四分之一,但是,回看兩家公司的財務年報,ZARA稅前毛利率比LVHM集團還高23、6%。

(1)分析顧客的需求

在ZARA的門店裡,櫃台和店內各角落都裝有攝影機,店經理隨身帶著PDA。目的是記錄其顧客的每個意見,如顧客對衣服圖案的偏好,扣子的大小,拉鏈的款式之類的微小舉動。店員會向分店經理匯報,經理上傳到ZARA內部全球資訊網路中,每天至少兩次傳遞資訊給總部設計人員,由總部作出決策後立即傳送到生產線,改變產品樣式。

關店後,銷售人員結帳、盤點每天貨品上下架情況,並對客人購買與退貨率做出統計。再結合櫃台現金資料,交易系統做出當日成交分析報告,分析當日產品熱銷排名,然後,數據直達ZARA倉儲系統 。

收集海量的顧客意見,以此做出生產銷售決策,這樣的作法大大降低了存貨率。同時,根據這些電話和電腦數據,ZARA分析出相似的「區域流行」,在顏色、版型的生產中,做出最靠近客戶需求的市場區隔。

(2)結合線上店數據

2010年,ZARA同時在六個歐洲國家成立網路商店,增加了網路巨量資料的串連性。2011年,分別在美國、日本推出網路平台,除了增加營收,線上商店強化了雙向搜尋引擎、資料分析的功能。不僅回收意見給生產端,讓決策者精準找出目標市場;也對消費者提供更准確的時尚訊息,雙方都能享受「大數據」帶來的好處。分析師預估,網路商店為ZARA至少提升了10%營收。

此外,線上商店除了交易行為,也是活動產品上市前的營銷試金石。ZARA通常先在網路上舉辦消費者意見調查,再從網路回饋中,擷取顧客意見,以此改善實際出貨的產品。

ZARA將網路上的海量資料看作實體店面的前測指標。因為會在網路上搜尋時尚資訊的人,對服飾的喜好、資訊的掌握,催生潮流的能力,比一般大眾更前衛。再者,會在網路上搶先得知ZARA資訊的消費者,進實體店面消費的比率也很高。

這些顧客資料,除了應用在生產端,同時被整個ZARA所屬的英德斯(Inditex)集團各部門運用:包含客服中心、行銷部、設計團隊、生產線和通路等。根據這些巨量資料,形成各部門的KPI,完成ZARA內部的垂直整合主軸。

ZARA推行的海量資料整合,後來被ZARA所屬英德斯集團底下八個品牌學習應用。可以預見未來的時尚圈,除了檯面上的設計能力,檯面下的資訊/數據大戰,將是更重要的隱形戰場。

(3)對數據快速處理、修正、執行

H&M一直想跟上ZARA的腳步,積極利用「大數據」改善產品流程,成效卻不彰,兩者差距愈拉愈大,這是為什麼?

主要的原因是,「大數據」最重要功能是縮短生產時間,讓生產端依照顧客意見,能於第一時間迅速修正。但是,H&M內部的管理流程,卻無法支撐「大數據」供應的龐大資訊。H&M的供應鏈中,從打版到出貨,需要三個月左右,完全不能與ZARA兩周的時間相比。

因為H&M不像ZARA,後者設計生產近半維持在西班牙國內,而H&M產地分散到亞洲、中南美洲各地。跨國溝通的時間,拉長了生產的時間成本。如此一來,「大數據」即使當天反映了各區顧客意見,無法立即改善,資訊和生產分離的結果,讓H&M內部的「大數據」系統功效受到限制。

「大數據」運營要成功的關鍵,是資訊系統要能與決策流程緊密結合,迅速對消費者的需求作出回應、修正,並且立刻執行決策。

3、亞馬遜

此前亞馬遜並未大張旗鼓推展廣告業務,直至2012年年底,有報道指出,亞馬遜即將推出實時廣告交易平台,從而向Facebook和谷歌發起挑戰。這個實時廣告交易平台又稱「需求方平台」(Demand Side Platform,DSP),可以讓廣告與目標消費者相遇。廣告商可以在「需求方平台」上競標網站的閑置廣告空間,而競標標的包括廣告版位,以及符合特定條件的消費者。

亞馬遜開發的「需求方平台」可以「協助廣告商接觸網路上的眾多用戶,同時也幫助客戶迅速找到想購買產品的相關資訊」,「需求方平台」概念雖非亞馬遜首創,但以豐富資料為後盾。

亞馬遜與廣告商分享的資訊有兩類,一是依用戶網路行為所做的通用分類,例如熱衷時尚、喜愛電子產品、身份為母親、愛喝咖啡等,二是用戶的商品搜尋記錄。至於消費者的實際購物資料,亞馬遜似乎尚未列入分享。廣告商即使無法得知實際消費記錄,能了解潛在顧客的商品搜尋記錄;亞馬遜如果全力進軍網路廣告市場,仍可能大大改變產業生態。

亞馬遜2012年的廣告收入約為5億美元, 2013年的廣告收入將達10億美元。這會成為亞馬遜未來幾年內營收增長的新動力,更重要的是,它可能是亞馬遜各項業務中利潤率最高的業務之一。

4、沃爾瑪

2011年,沃爾瑪電子商務的營收僅是亞馬遜的五分之一,且差距年年擴大,讓沃爾瑪不得不設法奮起直追,找出各種提升數字營收的模式。最終,沃爾瑪選擇在社交網站的移動商務上放手一搏,讓更大量、迅速的資訊,進入沃爾瑪內部銷售決策。沃爾瑪的每張購買建議清單,都是大量資料運算而出的結果。

2011年4月,沃爾瑪以3億美元高價收購了一家專長分類社群網站Kosmix。Kosmix不僅能收集、分析網路上的海量資料(大數據)給企業,還能將這些資訊個人化,提供采購建議給終端消費者(若不是追蹤結帳資料,這些細微的消費者習慣,很難從賣場巡邏中發現)。這意味著,沃爾瑪使用的「大數據」模式,已經從「挖掘」顧客需求進展到要能夠「創造」消費需求。

沃爾瑪本身就是一個海量資料系統,適用各種商業上的分析行為,它的綜合功能,作為世界最大的零售業(專題閱讀)巨人,沃爾瑪在全球超過200萬名員工,總共有110個超大型配送中心,每天處理的資料量超過10億筆。由於資料量過於龐大,沃爾瑪的「大數據」系統最重要的任務,就是在做出每一筆決定前,將執行成本降到最低,並且創造新的消費機會。

Kosmix為沃爾瑪打造的「大數據」系統稱做「社交基因組(Social Genome)」,連結到Twitter、Facebook等社交媒體。工程師從每天熱門消息中,推出與社會時事呼應的商品,創造消費需求。分類范圍包含消費者、新聞事件、產品、地區、組織和新聞議題等。同時,針對社交網路快消息流的性質,沃爾瑪內部的「大數據」實驗室專門發展出一套追蹤系統,結合手機上網,專門管理追蹤龐大的社交動態,每天能處理的資訊量超過10億筆。

「社交基因組」的應用方式五花八門。舉例來說,沃爾瑪實驗室內部軟體能從Foursquare平台上的打卡記錄,分析出在黑色星期五,不同地區消費者最常購買的品項,然後,針對不同地區送出購買建議。

以上是小編為大家分享的關於大數據如何與零售業結合 在實戰中應用的相關內容,更多信息可以關注環球青藤分享更多干貨

⑤ 大數據的內涵是什麼

中國發展門戶網訊 隨著新一代信息技術的迅猛發展和深入應用,數據的數量、規模不斷擴大,數據已日益成為土地、資本之後的又一種重要的生產要素,和各個國家和地區爭奪的重要資源,誰掌握數據的主動權和主導權,誰就能贏得未來。奧巴馬政府將數據定義為「未來的新石油」,認為一個國家擁有數據的規模、活性及解釋運用的能力將成為綜合國力的重要組成部分,對數據的佔有和控制將成為繼陸權、海權、空權之外的另一個國家核心權力。此後,一個全新的概念——大數據開始風靡全球。
大數據的概念與內涵
「大數據」的概念早已有之,1980年著名未來學家阿爾文•托夫勒便在《第三次浪潮》一書中,將大數據熱情地贊頌為「第三次浪潮的華彩樂章」。但是直到近幾年,「大數據」才與「雲計算」、「物聯網」一道,成為互聯網信息技術行業的流行詞彙。2008年,在谷歌成立10周年之際, 著名的《自然》雜志出版了一期專刊,專門討論未來的大數據處理相關的一系列技術問題和挑戰,其中就提出了「Big Data」的概念。2011年5 月,在「雲計算相遇大數據」 為主題的EMC World 2011 會議中,EMC 也拋出了Big Data概念。所以,很多人認為,2011年是大數據元年。
此後,諸多專家、機構從不同角度提出了對大數據理解。當然,由於大數據本身具有較強的抽象性,目前國際上尚沒有一個統一公認的定義。維基網路認為大數據是超過當前現有的資料庫系統或資料庫管理工具處理能力,處理時間超過客戶能容忍時間的大規模復雜數據集。全球排名第一的企業數據集成軟體商Informatica認為大數據包括海量數據和復雜數據類型,其規模超過傳統資料庫系統進行管理和處理的能力。亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。網路搜索的定義為:"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。互聯網周刊的定義為:"大數據"的概念遠不止大量的數據(TB)和處理大量數據的技術,或者所謂的"4個V"之類的簡單概念,而是涵蓋了人們在大規模數據的基礎上可以做的事情,而這些事情在小規模數據的基礎上是無法實現的。換句話說,大數據讓我們以一種前所未有的方式,通過對海量數據進行分析,獲得有巨大價值的產品和服務,或深刻的洞見,最終形成變革之力。
綜合上述不同的定義,我們認為,大數據至少應包括以下兩個方面:一是數量巨大,二是無法使用傳統工具處理。因此,大數據不是關於如何定義,最重要的是如何使用。它強調的不僅是數據的規模,更強調從海量數據中快速獲得有價值信息和知識的能力。
大數據4V特徵
一般認為,大數據主要具有以下四個方面的典型特徵:規模性(Volume)、多樣性(Varity)、高速性(Velocity)和價值性(Value),即所謂的「4V」。
1.規模性。大數據的特徵首先就體現為「數量大」,存儲單位從過去的GB到TB,直至PB、EB。隨著信息技術的高速發展,數據開始爆發性增長。社交網路(微博、推特、臉書)、移動網路、各種智能終端等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB;臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。
2.多樣性。廣泛的數據來源,決定了大數據形式的多樣性。大數據大體可分為三類:一是結構化數據,如財務系統數據、信息管理系統數據、醫療系統數據等,其特點是數據間因果關系強;二是非結構化的數據,如視頻、圖片、音頻等,其特點是數據間沒有因果關系;三是半結構化數據,如HTML文檔、郵件、網頁等,其特點是數據問的因果關系弱。
3.高速性。與以往的檔案、廣播、報紙等傳統數據載體不同,大數據的交換和傳播是通過互聯網、雲計算等方式實現的,遠比傳統媒介的信息交換和傳播速度快捷。大數據與海量數據的重要區別,除了大數據的數據規模更大以外,大數據對處理數據的響應速度有更嚴格的要求。實時分析而非批量分析,數據輸入、處理與丟棄立刻見效,幾乎無延遲。數據的增長速度和處理速度是大數據高速性的重要體現。
4.價值性。這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識,並運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。
大數據六大發展趨勢
雖然大數據目前仍處在發展的起步階段,尚存在著諸多的困難與挑戰,但我們相信,隨著時間的推移,大數據未來的發展前景非常可觀。
1.數據將呈現指數級增長
近年來,隨著社交網路、移動互聯、電子商務、互聯網和雲計算的興起,音頻、視頻、圖像、日誌等各類數據正在以指數級增長。據有關資料顯示,2011年,全球數據規模為1.8ZB,可以填滿575億個32GB的iPad,這些iPad可以在中國修建兩座長城。到2020年,全球數據將達到40ZB,如果把它們全部存入藍光光碟,這些光碟和424艘尼米茲號航母重量相當。美國互聯網數據中心則指出,互聯網上的數據每年將增長50%,每兩年便將翻一番,目前世界上90%以上的數據是最近幾年才產生的。
2.數據將成為最有價值的資源
在大數據時代,數據成為繼土地、勞動、資本之後的新要素,構成企業未來發展的核心競爭力。《華爾街日報》在一份題為《大數據,大影響》的報告宣傳,數據已經成為一種新的資產類別,就像貨幣或黃金一樣。IBM執行總裁羅睿蘭認為指出,「數據將成為一切行業當中決定勝負的根本因素,最終數據將成為人類至關重要的自然資源。」隨著大數據應用的不斷發展,我們有理由相信大數據將成為機構和企業的重要資產和爭奪的焦點谷歌、蘋果、亞馬遜、阿里巴巴、騰訊等互聯網巨頭正在運用大數據力量獲得商業上更大的成功,並且將會繼續通過大數據來提升自己的競爭力。
3.大數據和傳統行業智能融合
通過對大數據收集、整理、分析、挖掘, 我們不僅可以發現城市治理難題,掌握經濟運行趨勢,還能夠驅動精確設計和精確生產模式,引領服務業的精確化和增值化,創造互動的創意產業新形態。麥當勞、肯德基以及蘋果公司等旗艦專賣店的位置都是建立在數據分析基礎之上的精準選址。網路、阿里、騰訊等通過對海量數據的掌握和分析,為用戶提供更加專業化和個性化的服務。在智慧城市建設不斷深入的情況下,大數據必將在智慧城市中發揮越來越重要的作用。由城市數字化到智慧城市,關鍵是要實現對數字信息的智慧處理,其核心是引入了大數據處理技術,大數據將成為智慧城市的核心智慧引擎。智慧金融、智慧安防、智慧醫療、智慧教育、智慧交通、智慧城管等,無不是大數據和傳統產業融合的重要領域。
4.數據將越來越開放
大數據是人類的共同資源、共同財富,數據開放共享是不可逆轉的歷史潮流。隨著各國政府和企業對開放數據帶來的社會效益和商業價值認識的不斷提升,全球必將很快掀起一股數據開放的熱潮。事實上,大數據的發展需要全世界、全人類的共同協作,變私有大數據為公共大數據,最終實現私有、企業自有、行業自有的全球性大數據整合,才不至形成一個個毫無價值的「數據孤島」。大數據越關聯越有價值,越開放越有價值。尤其是公共事業和互聯網企業的數據開放數據將越來越多。目前,美歐等發達國家和地區的政府都在政府和公共事業上的數據做出了表率。中國政府也將一方面帶頭力促數據公開共享,另一方面,還通過推動建設各類大數據服務交易平台,為數據使用者提供豐富的數據來源和數據的應用。
5.大數據安全將日受重視
大數據在經濟社會中應用日益廣泛的同時,大數據的安全也必將受到更多的重視。大數據時代,在我們用數據挖掘和數據分析等大數據技術獲取有價值信息的同時,「黑客」也可以利用這些大數據技術最大限度地收集更多有用信息,對其感興趣的目標發起更加「精準的」攻擊。近年來,個人隱私、企業商業信息甚至是國家機密泄露事件時有發生。對此,美歐等發達國家紛紛制定完善了保護信息安全、防止隱私泄露等相關法律法規。可以預見,在不久的將來,其他國家也會迅速跟進,以更好地保障本國政府、企業乃至居民的數據安全。
6.大數據人才將備受歡迎
隨著大數據的不斷發展及其應用的日益廣泛,包括大數據分析師、數據管理專家、大數據演算法工程師、數據產品經理等在內的具有豐富經驗的數據分析人員將成為全社會稀缺的資源和各機構爭奪的人才。據著名國際咨詢公司Gartner預測,2015年全球大數據人才需求將達到440萬人,而人才市場僅能夠滿足需求的三分之一。麥肯錫公司則預測美國到2018年需要深度數據分析人才44萬—49萬,缺口為14萬—19萬人。有鑒於此,美國通過國家科學基金會,鼓勵研究性大學設立跨學科的學位項目,為培養下一代數據科學家和工程師做准備,並設立培訓基金支持對大學生進行相關技術培訓,召集各個學科的研究人員共同探討大數據如何改變教育和學習等。英國、澳大利亞、法國等國家也類似地對大數據人才的培養做出專項部署。IBM 等企業也開始全面推進與高校在大數據領域的合作,力圖培養企業發展需要的既懂業務知識又具分析技能的復合型數據人才。(武鋒:國家信息中心)

閱讀全文

與麥當勞如何測算大數據相關的資料

熱點內容
如何找到隱藏起來的程序 瀏覽:886
陝西資質化工材料產品怎麼樣 瀏覽:722
為什麼跨境產品上新失敗 瀏覽:740
如何看待數據開放與安全 瀏覽:46
趣頭條信息流如何投放 瀏覽:747
交易卡被限制交易怎麼回事 瀏覽:982
商水狗貓市場在哪個位置 瀏覽:522
電腦微信小程序游戲怎麼放大 瀏覽:560
ct三維重建技術是哪裡的 瀏覽:931
小區底商怎麼代理快遞 瀏覽:715
什麼產品可以無限復制系統 瀏覽:541
受權代理書什麼寫 瀏覽:160
全球多少晶元使用蔡司技術製造 瀏覽:821
什麼節點負責數據的存儲 瀏覽:675
廣西掃碼抗疫情小程序如何更換個人信息 瀏覽:111
如何把iphone的程序同步到ipad中 瀏覽:50
程序員出差住宿怎麼辦 瀏覽:531
怎麼查網紅的直播數據 瀏覽:75
收縮毛孔去角質產品有哪些 瀏覽:418
如何把微信小程序的照片保存 瀏覽:737