導航:首頁 > 數據處理 > 國內證券數據採集技術有哪些

國內證券數據採集技術有哪些

發布時間:2023-07-20 15:35:56

Ⅰ 簡述傳統數據採集的關鍵技術有哪些他們之間的關系是什麼

大數據採集技術,大數據預處理技術,大數據存儲及管理技術,大數據分析及挖掘技術,大數據展現與應用技術
數據採集是指通過RFID射頻數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得的各種類型的結構化、半結構化(或稱之為弱結構化)及非結構化的海量數據,是大數據知識服務模型的根本。重點要突破分布式高速高可靠數據爬取或採集、高速數據全映像等大數據收集技術;突破高速數據解析、轉換與裝載等大數據整合技術;設計質量評估模型,開發數據質量技術。
大數據存儲與管理要用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。重點解決復雜結構化、半結構化和非結構化大數據管理與處理技術。主要解決大數據的可存儲、可表示、可處理、可靠性及有效傳輸等幾個關鍵問題。開發可靠的分布式文件系統(DFS)、能效優化的存儲、計算融入存儲、大數據的去冗餘及高效低成本的大數據存儲技術;突破分布式非關系型大數據管理與處理技術,異構數據的數據融合技術,數據組織技術,研究大數據建模技術;突破大數據索引技術;突破大數據移動、備份、復制等技術;開發大數據可視化技術。
大數據分析技術。改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
大數據技術能夠將隱藏於海量數據中的信息和知識挖掘出來,為人類的社會經濟活動提供依據,從而提高各個領域的運行效率,大大提高整個社會經濟的集約化程度。

Ⅱ 數據採集技術是什麼

數據採集技術指完成數據從源端獲取,並傳輸到大數據平台,以供數據治理、數據服務使用。數據是指通過RFID射頻數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得的各種類型的結構化、半結構化(或稱之為弱結構化)及非結構化的海量數據,是大數據知識服務模型的根本。重點要突破分布式高速高可靠數據爬取或採集、高速數據全映像等大數據收集技術;突破高速數據解析、轉換與裝載等大數據整合技術;設計質量評估模型,開發數據質量技術。
OceanMind海睿思數據採集包括公開數據採集和採集匯聚工具。
公開數據採集主要偏向於互聯網公開數據的採集、匯聚,公開數據採集是一個靈活、便捷、高效、可擴展的互聯網數據爬蟲系統。可實現利用模板從指定公開網頁上爬取數據,並提供給後續數據處理使用。
採集匯聚工具偏向於持有型數據的採集、匯聚,匯聚工具是可視化數據採集軟體,外部數據通過採集工具將資料庫或文件類型的數據轉換為制定格式的文件(CSV、parquet)存放到指定的FTP路徑,然後通過匯聚工具將FTP傻姑娘的文件匯聚至大數據平台。

Ⅲ 傳統數據採集的關鍵技術有哪些他們之間的關系是什麼

有大數據採集、大數據預處理、大數據存儲及管理,是指從感測器和其它待測設備等模擬和數字被測單元中自動採集信息的過程。
傳統數據挖掘方式,採集方法,內容分類,採信標准等都已存在既有規則,方法論完整。

Ⅳ 常用的大數據技術有哪些

大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。

1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。

2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,

3、基礎架構:雲存儲、分布式文件存儲等。

4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。

5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。

6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。

7、模型預測:預測模型、機器學習、建模模擬。

8、結果呈現:雲計算、標簽雲、關系圖等。

Ⅳ 大數據採集技術有哪些

我知道的數據採集方法有這幾種:
第一種:軟體介面方式

通過各軟體廠商開放數據介面,實現不同軟體數據的互聯互通。這是目前最為常見的一種數據對接方式。
優勢:介面對接方式的數據可靠性與價值較高,一般不存在數據重復的情況;數據可通過介面實時傳輸,滿足數據實時應用要求。
缺點:①介面開發費用高;②需協調多個軟體廠商,工作量大且容易爛尾;③可擴展性不高,如:由於新業務需要各軟體系統開發出新的業務模塊,其和大數據平台之間的數據介面也需做相應修改和變動,甚至要推翻以前的所有數據介面編碼,工作量大、耗時長。

第二種:軟體機器人採集
軟體機器人是目前比較前沿的軟體數據對接技術,即能採集客戶端軟體數據,也能採集網站網站中的軟體數據。
常見的是博為小幫軟體機器人,產品設計原則為「所見即所得」,即不需要軟體廠商配合的情況下,採集軟體界面上的數據,輸出的結果是結構化的資料庫或者excel表。
如果只需要界面上的業務數據,或者遇到軟體廠商不配合/倒閉、資料庫分析困難的情況下, 利用軟體機器人採集數據更可取,尤其是詳情頁數據的採集功能比較有特色。
技術特點如下:

①無需原軟體廠商配合;②兼容性強,可採集匯聚Windows平台各種軟體系統數據;③輸出結構化數據;④即配即用,實施周期短、簡單高效;⑤配置簡單,不用編程,每個人都可以DIY一個軟體機器人;⑥價格相對人工和介面,降低不少。
缺點:採集軟體數據的實時性有一定限制。

第三種:網路爬蟲
網路爬蟲是模擬客戶端發生網路請求,接收請求響應,一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。
爬蟲採集數據的缺點:①輸出數據多為非結構化數據;②只能採集網站數據,容易受網站反爬機制影響;③使用人群狹窄,需要有專業編程知識才能玩轉。

第四種:開放資料庫方式
數據的採集融合,開放資料庫是最直接的一種方式。
優勢:開放資料庫方式可以直接從目標資料庫中獲取需要的數據,准確性高,實時性也有保證,是最直接、便捷的一種方式。
缺點:開放資料庫方式也需要協調各軟體廠商開放資料庫,這需要看對方的意願,一般出於安全考慮,不會開放;一個平台如果同時連接多個軟體廠商的資料庫,並實時獲取數據,這對平台性能也是巨大挑戰。
以上便是常用的4種數據採集方式,各有優勢,適合不同的應用場景。

Ⅵ 數據採集的基本方法

常見的數據採集方式有問卷調查、查閱資料、實地考查、試驗。
1、問卷調查:問卷調查是數據收集最常用的一種方式,因為它的成本比較低,而且得到的信息也會比較全面。
2、查閱資料:查閱資料是最古老的數據收集的方式,通過查閱書籍,記錄等資料來得到自己想要的數據。
3、實地考查:實地考察是到指定的地方去做研究,指為明白一個事物的真相,勢態發展流程,而去實地進行直觀的,局部進行詳細的調查。
4、實驗:實驗收集數據的優點是數據的准確性很高,而缺點是未知性很大,不管實驗的周期還是實驗的結果都是不確定性的。

閱讀全文

與國內證券數據採集技術有哪些相關的資料

熱點內容
陝西資質化工材料產品怎麼樣 瀏覽:722
為什麼跨境產品上新失敗 瀏覽:740
如何看待數據開放與安全 瀏覽:46
趣頭條信息流如何投放 瀏覽:747
交易卡被限制交易怎麼回事 瀏覽:982
商水狗貓市場在哪個位置 瀏覽:522
電腦微信小程序游戲怎麼放大 瀏覽:560
ct三維重建技術是哪裡的 瀏覽:931
小區底商怎麼代理快遞 瀏覽:715
什麼產品可以無限復制系統 瀏覽:541
受權代理書什麼寫 瀏覽:160
全球多少晶元使用蔡司技術製造 瀏覽:821
什麼節點負責數據的存儲 瀏覽:675
廣西掃碼抗疫情小程序如何更換個人信息 瀏覽:111
如何把iphone的程序同步到ipad中 瀏覽:50
程序員出差住宿怎麼辦 瀏覽:531
怎麼查網紅的直播數據 瀏覽:75
收縮毛孔去角質產品有哪些 瀏覽:418
如何把微信小程序的照片保存 瀏覽:737
ai數據怎麼能知道哪裡年輕人多 瀏覽:442