導航:首頁 > 數據處理 > 數據治理的成果如何展示

數據治理的成果如何展示

發布時間:2023-07-20 01:22:43

❶ 如何實現成功的數據治理

從技術實施角度看,數據治理包含「理」「采」「存」「管」「用」這五個步驟,即業務和數據資源梳理、數據採集清洗、資料庫設計和存儲、數據管理、數據使用。

數據資源梳理:數據治理的第一個步驟是從業務的視角釐清組織的數據資源環境和數據資源清單,包含組織機構、業務事項、信息系統,以及以資料庫、網頁、文件和 API 介面形式存在的數據項資源,本步驟的輸出物為分門別類的數據資源清單。

數據採集清洗:通過可視化的 ETL 工具將數據從來源端經過抽取 (extract)、轉換 (transform)、載入 (load) 至目的端的過程,目的是將散落和零亂的數據集中存儲起來。

基礎庫主題庫建設:一般情況下,可以將數據分為基礎數據、業務主題數據和分析數據。基礎數據一般指的是核心實體數據,或稱主數據,例如智慧城市中的人口、法人、地理信息、信用、電子證照等數據。主題數據一般指的是某個業務主題數據,例如市場監督管理局的食品監管、質量監督檢查、企業綜合監管等數據。而分析數據指的是基於業務主題數據綜合分析而得的分析結果數據,例如市場監督管理局的企業綜合評價、產業區域分布、高危企業分布等。那麼基礎庫和主題庫的建設就是在對業務理解的基礎上,基於易存儲、易管理、易使用的原則抽像數據存儲結構,說白了,就是基於一定的原則設計資料庫表結構,然後再根據數據資源清單設計數據採集清洗流程,將整潔干凈的數據存儲到資料庫或數據倉庫中。


元數據管理:元數據管理是對基礎庫和主題庫中的數據項屬性的管理,同時,將數據項的業務含義與數據項進行了關聯,便於業務人員也能夠理解資料庫中的數據欄位含義,並且,元數據是後面提到的自動化數據共享、數據交換和商業智能(BI)的基礎。需要注意的是,元數據管理一般是對基礎庫和主題庫中(即核心數據資產)的數據項屬性的管理,而數據資源清單是對各類數據來源的數據項的管理。

血緣追蹤:數據被業務場景使用時,發現數據錯誤,數據治理團隊需要快速定位數據來源,修復數據錯誤。那麼數據治理團隊需要知道業務團隊的數據來自於哪個核心庫,核心庫的數據又來自於哪個數據源頭。我們的實踐是在元數據和數據資源清單之間建立關聯關系,且業務團隊使用的數據項由元數據組合配置而來,這樣,就建立了數據使用場景與數據源頭之間的血緣關系。 數據資源目錄:數據資源目錄一般應用於數據共享的場景,例如政府部門之間的數據共享,數據資源目錄是基於業務場景和行業規范而創建,同時依託於元數據和基礎庫主題而實現自動化的數據申請和使用。

質量管理:數據價值的成功發掘必須依託於高質量的數據,唯有準確、完整、一致的數據才有使用價值。因此,需要從多維度來分析數據的質量,例如:偏移量、非空檢查、值域檢查、規范性檢查、重復性檢查、關聯關系檢查、離群值檢查、波動檢查等等。需要注意的是,優秀的數據質量模型的設計必須依賴於對業務的深刻理解,在技術上也推薦使用大數據相關技術來保障檢測性能和降低對業務系統的性能影響,例如 Hadoop,MapRece,HBase 等。

商業智能(BI):數據治理的目的是使用,對於一個大型的數據倉庫來說,數據使用的場景和需求是多變的,那麼可以使用 BI 類的產品快速獲取需要的數據,並分析形成報表,像派可數據就屬於專業的BI廠商。

數據共享交換:數據共享包括組織內部和組織之間的數據共享,共享方式也分為庫表、文件和 API 介面三種共享方式,庫表共享比較直接粗暴,文件共享方式通過 ETL 工具做一個反向的數據交換也就可以實現。我們比較推薦的是 API 介面共享方式,在這種方式下,能夠讓中心數據倉庫保留數據所有權,把數據使用權通過 API 介面的形式進行了轉移。API 介面共享可以使用 API 網關實現,常見的功能是自動化的介面生成、申請審核、限流、限並發、多用戶隔離、調用統計、調用審計、黑白名單、調用監控、質量監控等等。

❷ 如何將數據進行數據可視化展現

當前,許多企業已建立了自己的人力資源管理系統,也累積了相當的人力資源業務數據。然而,正如業內的那句老話「rich data, poor information」,以前累積的數據,並沒有很好的得到利用。原因是這些數據來源太廣,格式不統一,並且其中極少量的數據記錄格式不正確;同時,累計的數據量相當龐大,但許多細節對高層管理人員來說並不重要,他們需要快速、全面的掌握企業的人力資源全貌,綜合、全面、宏觀的信息支持,將是領導們關注的對象。

面對龐大復雜的員工管理數據,企業高管人員需要通過數據來了解他們的員工會做什麼?應該僱傭誰?應該晉升誰?誰是頂層員工?誰有可能離職?

數據分析方面,藉助於DataViz自助式數據分析和可視化展現功能,深度挖掘人力資源數據,通過可視化動態交互探索數據規律。輔助企業高管更加直觀和高效地洞悉潛藏在數據背後的知識與智慧。

❸ 企業數據治理成功實現工作如何開展

1、需要企業高層支持,將數據治理工作放在企業重點工作中,保證對數據治理項目人力物力的投入,提高數據治理相關部門和人員的執行力。
2、建立完善的數據治理組織,數據治理管理制度,並明確組織內各角色的職責。數據治理團隊可由業務部門牽頭,IT部門聯合組成,然後結合企業的現狀,制定相應的管理辦法、管理流程、認責體系、人員角色和崗位職責等,頒布相關的數據治理的企業規章制度。
3、建立數據規范。數據規范是指對企業核心數據進行有關存在性、完整性、質量及歸檔的測量標准,為評估企業數據質量,並且為手動錄入、設計數據載入程序、更新信息以及開發應用軟體提供的約束性規則,數據規范一般包括數據標准、數據模型、業務規則、元數據、主數據和參考數據。

❹ 大數據時代如何做好數據治理

企業數據分析系統的數據來源是各個業務系統或手工數據,這些數據的格式、內容等都有可能不同。如果不進行數據治理,數據的價值難以發揮。只有對數據標准進行規范,管理元數據、數據監控等,才能得到高質量的數據。得到規范的數據後,才可在此基礎上進行主題化的數據建模、數據挖掘、數據分析等。

2013年被眾多的IT人定義為中國的大數據元年,這一年國內的大數據項目開始在交通、電信、金融部門被廣泛推動。各大銀行對Hadoop的規劃、POC尤其風生水起,帶動了一波大數據應用的熱潮,這個熱潮和當初數據倉庫進入中國時的2000年左右很相似:應用還沒有想好,先歸集一下數據,提供一些查詢和報表,以技術建設為主,業務推動為輔。這就導致了這股Hadoop熱潮起來的時候,傳統企業都是以數據歸集為主的,而BAT這樣的企業則天生以數據為生,早早進入了數據驅動技術和業務創新的階段。

隨著Hadoop技術的提升,數據如何進來,如何整合,開展什麼樣的應用都已經有了成熟的案例,可是,同傳統數倉時代一樣,垃圾進垃圾出,如何破?相比傳統數倉時代,進入Hadoop集群的數據更加的多樣、更加的復雜、量更足,這個數倉時代都沒有處理好的事情,如何能夠在大數據時代處理好,這是所有大數據應用者最最期盼的改變,也是大數據平台建設者最有挑戰的難題:數據治理難的不是技術,而是流程,是協同,是管理。 睿治數據治理平台平台架構

元數據:採集匯總企業系統數據屬性的信息,幫助各行各業用戶獲得更好的數據洞察力,通過元數據之間的關系和影響挖掘隱藏在資源中的價值。

數據標准:對分散在各系統中的數據提供一套統一的數據命名、數據定義、數據類型、賦值規則等的定義基準,並通過標准評估確保數據在復雜數據環境中維持企業數據模型的一致性、規范性,從源頭確保數據的正確性及質量,並可以提升開發和數據管理的一貫性和效率性。

數據質量:有效識別各類數據質量問題,建立數據監管,形成數據質量管理體系,監控並揭示數據質量問題,提供問題明細查詢和質量改進建議,全面提升數據的完整性、准確性、及時性,一致性以及合法性,降低數據管理成本,減少因數據不可靠導致的決策偏差和損失。

數據集成:可對數據進行清洗、轉換、整合、模型管理等處理工作。既可以用於問題數據的修正,也可以用於為數據應用提供可靠的數據模型。

主數據:幫助企業創建並維護內部共享數據的單一視圖,從而提高數據質量,統一商業實體定義,簡化改進商業流程並提高業務的響應速度。

數據資產:匯集企業所有能夠產生價值的數據資源,為用戶提供資產視圖,快速了解企業資產,發現不良資產,為管理員提供決策依據,提升數據資產的價值。

數據交換:用於實現不同機構不同系統之間進行數據或者文件的傳輸和共享,提高信息資源的利用率,保證了分布在異構系統之間的信息的互聯互通,完成數據的收集、集中、處理、分發、載入、傳輸,構造統一的數據及文件的傳輸交換。

生命周期:管理數據生老病死,建立數據自動歸檔和銷毀,全面監控展現數據的生命過程。

數據安全:提供數據加密、脫敏、模糊化處理、賬號監控等各種數據安全策略,確保數據在使用過程中有恰當的認證、授權、訪問和審計等措施。

建立完整的、科學的、安全的、高質量的數據管控技術體系,是首要的任務。作為數據管控的基石,為了更好支撐後續工作的開展,技術體系必須一步到位,是功能完備、高質量、高擴展性的,而不是僅實現部分功能,或者功能不完善的「半成品」。

疊加更多業務數據、細化數據業務屬性與管理屬性、優化與調整數據管控流程,尤其是適應未來的現代企業數據管控制度的建立完善,是逐步積累推廣、不斷磨合改進的長期過程。這些工作應及早啟動,並成為後續大數據平台建設工作的重點。

談大數據時代的數據治理 當前要做的是功能框架的完善,而完善的著力點則是「數據資產目錄」:用資產化的視角來管理一個企業的數據,只有把數據作為資產來認識和管理,大數據項目才能達成預期,也能夠治理好。大數據時代帶來的價值,個人認為主要有兩個,一個是技術架構,主要是架構理念的進步,另外一個更重要的則是對數據的重視。大數據時代是數據的時代,IT向DT轉型,不單單是BAT,所有的IT公司,未來都在數據這兩個字上。

對於一個企業來說,把數據作為資產,才是建設大數據的最終目的,而不是僅僅是因為Hadoop架構帶來性價比和未來的擴展性。當一個企業把數據作為資產,他就像管理自己名下存摺、信用卡一樣,定期梳理,無時無刻不關心資產的變化情況,關注資產的質量。

而資產目錄就是管理資產的形式和手段,他像菜單一樣對企業的資產進行梳理、分門別類,提供給使用者;使用者通過菜單,點選自己需要的數據,認可菜單對應的後端處理價值,後廚通過適當的加工,推出相應的數據服務;這是一個標準的流程,而這些流程之上,附著一整套數據管理目標和流程。

大數據平台以數據資產目錄為核心,將元數據、數據標准、主數據、數據質量、數據生命周期、數據輪廓等信息在邏輯層面關聯起來,在管理層面上整合成統一的整體,構建起數據管理體系,全面的支持數據服務等具體應用。

大數據平台實現了數據存儲、清洗和應用。在數據匯入和匯出的過程中,需要對數據的元數據進行統一記錄和管理,以利於後續的數據應用和數據血緣分析。數據質量一直是數據集成系統的基礎工作,對數據的各個環節設置數據質量檢查點,對數據質量進行剖析、評估,以保證後續應用的可信度。

在數據收集的過程中,隨著數據維度、指標的聚集,如何找到所需的業務指標及屬性,並且評估相關屬性的業務及技術細節,需要對收集的所有數據進行業務屬性,並進行分類,建立完善的數據資產目錄。

數據資產目錄是整個大數據平台的數據管理基礎,而數據資產目錄由於數據的多樣性,在使用的過程中,必然涉及數據許可權的申請、審批管控流程,而管控流程的建立依賴於相應崗位的設立和對應職責的建立。

大數據平台的數據管理架構規劃,通過數據物理集中和數據邏輯整合,徹底擺脫企業「數據豎井」的困境。大數據平台數據管理架構分為功能架構、流向規劃和數據架構三個層面。

數據管理功能架構:借鑒DAMA數據管理和DMM數據成熟度理論,著眼於數據管理技術和數據管理流程融合,組織數據管理功能。

數據流向規劃架構:規劃整個大數據平台的數據流向,並在數據流入、數據整合、數據服務的具體環節實現精細化管理。

數據管理的數據架構:以數據資產目錄為核心,數據項為最小管理單元,將技術元數據(實體、屬性和關系)、業務元數據和管理元數據(數據標准、主數據、數據質量、數據安全)融合為彼此緊密聯系、密不可分的整體,共同構成精細化管理的數據基礎。

數據管理在整個大數據平台不僅僅是一個主要功能模塊,它還是整個企業層面數據治理的重要組成部分,它是技術和管理流程的融合,也需要合理管控流程框架下組織機構之前的協調合作。如何利用統一的數據管理模塊對企業所有進入到數據湖的數據進行有效管控,不單單取決於數據管理模塊本身,也取決於元數據的合理採集、維護,組織結構及制度的強力支持保證。

談大數據時代的數據治理 大數據平台數據管理參照了DAMA對於數據管理的九個管理目標,並進行裁剪,並對部分管理目標進行了合並,並參照了CMMI制定DMM數據成熟度目標,採用循序漸進,逐步完善的策略對管理目標進行分階段完成,制定完整的管控流程和數據治理規范,以便持續的對數據進行管理,遞進實現DMM定義的成熟度目標。

億信睿治數據治理管理平台和DAMA的對應關系如下:

談大數據時代的數據治理 大數據平台數據管理的核心內容是數據資產目錄,圍繞數據資產目錄的數據流入、數據整合、數據服務都是數據管理的核心。數據管理主要管理數據的流動,以及管理流動帶來的數據變化,並對數據底層的數據結構、數據定義、業務邏輯進行採集和管理,以利於當前和未來的數據使用。為了更好的對數據進行管理和使用,制度層面的建設、流程的設立必不可少,同時也兼顧到數據在流動過程中產生的安全風險和數據隱私風險。

因此數據管理介入到完整的數據流轉,並在每個節點都有相應的管理目標對應,整個數據流框架如下圖所示:

談大數據時代的數據治理 企業在建制大數據平台的同時,對進入數據湖的數據進行梳理,並按照數據資產目錄的形式對外發布。在發布數據資產之後,則對進出數據湖的數據進行嚴格的出入庫管理,保證數據可信度,並定期進行數據質量剖析檢查,確保數據資產完善、安全、可信,避免「不治理便破產」的讖言。

❺ 如何成功實現數據治理

隨著信息技術的飛速發展,各領域的數據量都在爆發式增長,尤其在雲計算、物聯網、移動互聯網等it技術得到廣泛應用之後,數據的增長實現了從量變到質變的轉型,大數據如浪潮般席捲而來,人類社會進入大數據時代。大數據不僅僅只是一次顛覆性的技術革命,更是一場思維方式、行為模式與治理理念的全方位變革,尤其在治理領域,大數據帶來了巨大的變革潛力和創新空間。在「全面深化改革,推進國家治理體系和治理能力現代化」的時代背景下,應充分重視大數據在治理中的重要價值,牢牢抓住大數據為治理提供的創新機遇,切實提高各級部門的治理能力。
一、大數據為治理理念轉型帶來新機遇
治理理念的轉型是提升治理能力的前提,理念的轉型需要新文化、新思維的融入,大數據所蘊含的數據文化與數據思維恰好可以為治理理念轉型提供突破口,基於大數據探索治理的多元、多層、多角度特徵,最終實現以為主體的管制理念向以協同共治、公共服務為導向的治理理念的轉型。在大數據時代,治理的依據不再是個人經驗和長官意志,而是實實在在的數據,在過去深入群眾、實地調研考察的基礎上,系統採集的客觀數據和實證分析的科學結果將成為最為重要的決策依據。「尊重事實、推崇理性、強調精確」的特徵和「用數據說話、用數據決策、用數據管理、用數據創新」的理念將成為治理理念轉型的核心要義。
二、大數據為治理模式創新帶來新機遇
大數據通過把數學演算法運用於海量數據,從數據中尋找相關關系,通過這種相關性預測事情發生的可能性,這是大數據方法論的核心思想。此外,依託於大數據技術和,通過、眾包等靈活的組織方式,可以推動治理的組織架構從科層、分割、封閉向開放、協同、合作轉型,因此把大數據的方法和手段引入到治理領域,是實現治理模式創新的有效路徑。基於上述方法論,大數據為治理模式創新帶來的新機遇主要包括:從粗放式管理到精細化治理、從單兵作戰型管理到協作共享型治理、從被動響應型管理到主動預見型治理、從電子政務管理到2.0治理、從風險隱蔽型管理到風險防範型治理,最終實現全面數據驅動的治理模式創新。
三、大數據為決策科學化帶來新機遇
隨著公共事務的日益復雜,僅憑個人感知已經很難全面了解所有正在發生的事情並做出正確判斷,部門想要提高決策的科學性,就需要把大數據思維與技術運用到治理與決策中,依靠大規模數據的收集來直觀呈現經濟社會運行規律,通過相應的數據挖掘來輔助部門進行科學決策。大數據為決策科學化帶來的機遇主要體現在兩個方面:首先,在決策的制定階段,大數據背景下,決策不再是個別領導幹部「拍腦袋」做出的,而是通過「用數據說話」,讓聽得見炮火的人(數據)做出決策,這樣的決策是在對客觀數據進行科學分析、充分了解客觀現實的基礎上做出的,這樣大大提高了決策的精準性、適用性和科學化水平;其次,在決策實施效果的跟蹤反饋階段,通過物聯網和社交網路的普及,大量的客觀數據能夠快速匯集給決策者,通過這些數據對決策的實施過程和效果進行實時監控,能夠更全面地掌握決策的實施效果和下一步的改進方向。
四、大數據為服務效能提升帶來新機遇
提升服務效能是治理能力提升的重要支撐,也是大數據背景下服務型建設的關鍵所在,在治理的范疇下,提升服務效能主要包括部門行政審批的效率提升和公共服務產品的質量提高兩個方面。在提升行政審批效率方面,大數據可以打通各個部門的信息孤島,打破各部門數據的條塊分割,通過構建統一的行政審批雲,讓數據為老百姓「跑腿辦事」,省去了「跑斷腿、磨破嘴,辦事跑十幾個部門,蓋幾十個公章」的苦惱和無奈,這樣既提高了行政審批效率,又節約了開支。在提高公共服務產品質量方面,大數據通過對公共服務產品數據和服務對象數據的挖掘、分析,提升公共服務產品供給的精準化、分層化、個性化;通過公共數據的開放和兼容,讓公眾參與到公共服務產品設計、提供和監督等各個環節,實現公共服務產品質量的提高。

❻ 數據治理三個階段是什麼

數據治理分為四個階段:

第一階段,梳理企業信息,構建企業的數據資產庫。首先要清楚企業的數據模型、數據關系,對企業資產形成業務視圖、技術視圖等針對不同用戶視角的展示。

第二階段,建立管理流程,落地數據標准,提升數據質量。從企業角度梳理質量問題,緊抓標准落地。

第三階段,直接為用戶提供價值。本階段依賴於前兩個階段的建設,為用戶提供方便的獲取數據的途徑。

第四階段,為企業提供數據價值。通過多種手段對多種來源的數據進行分析,形成企業知識圖譜,體現數據的深層價值。

通過這4個階段的建設,建立起全企業的數據質量管控平台,以用戶為中心,由用戶使用數據並通過用戶的使用優化數據質量,既達到了數據治理的目標,也最大限度的發揮了數據的價值。



數據治理方案:

有關數據治理的問題並不能在企業的單一部門得到解決。這需要IT與業務部門進行協作,而且必須始終如一地進行協作,以改善數據的可靠性和質量,從而為關鍵業務方案提供支持,並確保遵守法規。

Informatica能夠提供企業級數據治理解決方案,該解決方案可以在本地或雲中使用,在傳統數據或大數據中均有使用案例,可以滿足業務和IT部門的需求。

Informatica可提供功能齊全而又穩健可靠的數據治理解決方案,具備交付可信、安全的數據和啟動成功的元數據管理方案所需的全部精確功能。

Informatica Axon提供端到端智能數據治理解決方案,以整體、協作的方法將員工、流程和系統流暢融合,從而實現戰略業務成果。Axon Data Governance作為協作中心,為成功實施數據治理計劃提供支持。

閱讀全文

與數據治理的成果如何展示相關的資料

熱點內容
電腦微信小程序游戲怎麼放大 瀏覽:560
ct三維重建技術是哪裡的 瀏覽:931
小區底商怎麼代理快遞 瀏覽:715
什麼產品可以無限復制系統 瀏覽:541
受權代理書什麼寫 瀏覽:160
全球多少晶元使用蔡司技術製造 瀏覽:821
什麼節點負責數據的存儲 瀏覽:675
廣西掃碼抗疫情小程序如何更換個人信息 瀏覽:111
如何把iphone的程序同步到ipad中 瀏覽:50
程序員出差住宿怎麼辦 瀏覽:531
怎麼查網紅的直播數據 瀏覽:75
收縮毛孔去角質產品有哪些 瀏覽:418
如何把微信小程序的照片保存 瀏覽:737
ai數據怎麼能知道哪裡年輕人多 瀏覽:442
廠家如何做好後市場 瀏覽:916
三菱系統m70如何用小內存傳程序 瀏覽:687
籃球技術不到位怎麼辦 瀏覽:930
集體土地確權怎麼交易 瀏覽:492
美團技術服務費折扣系數怎麼續 瀏覽:313
塗料產品檢測哪些 瀏覽:289