導航:首頁 > 數據處理 > 大數據是跟什麼走的

大數據是跟什麼走的

發布時間:2023-07-17 20:57:17

大數據主要來源於什麼

來源:從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

(1)大數據是跟什麼走的擴展閱讀:

大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:

第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

❷ 行程大數據是根據什麼定位的

通信大數據行程卡是通過手機號信號位置來定位使用者位置信息的。

簡單來說,就是利用手機與基站之間的通信定位,因為手機隨機移動到任何地方,只要能和基站通信,就能進行數據交互,移動通信網路下的站點劃分為很多位置區,每個位置區從幾平方公里到幾十平方公里不等(話務量高的地方位置區會小一些,話務量低的地方位置區可以大一些)。

行程碼注意事項

為精準把握分區分級防控要求,推進生產生活秩序全面有序恢復,根據疫情防控形勢需要,將在全區范圍內推廣「居民健康碼」「個人行程碼」。

轄區的高鐵南站、汽車站、企事業單位、賓館、酒店、網約房、民宿、出租屋、網吧、娛樂場所等人員流動和聚集區域要全面倡導使用「兩碼」,對所有進入人員逐一查驗「兩碼」。

❸ 大數據發展趨勢預測 該往哪裡走

大數據發展趨勢預測 該往哪裡走

想考察大數據最好同時考察大數據背後的技術、商業和社會維度。從發展成熟度來看,技術維度走的最遠、商業維度有所發展但不算全面成熟,社會維度發展最差。所以雖然已經談了很久大數據,但除了孕育出大數據自身的幾個領域比如搜索等,其它領域卻並沒有從大數據中獲得可見的收益。大多時候人們還是處在覺得這里肯定有金子,但需要更多的耐心的狀態。這篇文章則嘗試對大數據本身的特徵做點挖掘,對未來的發展趨勢做點預測。大數據上的深度和廣度如果把大數據對應到海量的數據,那它就是非常含糊的概念,相當於變成信息的同義詞,顯然也就很難回答信息到底能幹什麼這樣的問題。這時候為了推進思考通常需要先分類。如果把時間空間作為最基本的視角,那首先要區分的就是大數據的深度和廣度。從時間的角度看大數據是完整的歷史,從空間的角度看大數據是全球活動的痕跡。前者可以看成一種深度,後者可以看成一種廣度,不同的場景對深度和廣度的側重有所不同。對於有些垂直的行業,比如醫療,大數據的深度更重要,所有的歷史都可以在數據上得到找到之後,人們就可以更好的認知並優化相應的行業。對社會而言,很多時候廣度則更重要,具體到某個場景我們只有一鱗半爪的消息,但當這種信息足夠多,范圍足夠廣,就有可能描述出相對及時的全貌。經常舉的Google預測傳染病的例子依賴的就是這種廣度。這點決定了大數據的應用發展趨勢,在深度重要的地方,公司這類組織需要成為主體,困難是如何跨越數據所有權的邊界。對於醫院而言,顯然把所有治療案例數據化並共享是有好處的,但如果只有一個醫院這么做,那對這一家醫院而言更多的可能是隱私上反彈所帶來的壞處。在廣度重要的地方,雖然在搜索這樣的領域里公司也可以受益,但真正可以從大數據全面受益的機構其實是政府。數據越廣,其所描述的主體就越大,而如果描述的是整個社會,那顯然應該是社會的主要責任人會從中受益。這是個常識問題,就和看病的時候不會吃了醫生給別人開的葯自己反倒好了差不多。有的時候央視會播放網路做的春節期間人員流動圖,這件事情也正好可以從側面說明這問題。這種人員流動地圖對能做出地圖的人公司幫助遠沒有對政府的幫助大。簡單總結下就是:深度和廣度兩個方向對數據的要求不同,前者需要更為詳盡、有質量的數據源後者則對此要求不高,但兩者在應用的時候都會面臨付出回報不對等問題。大數據傾向於描述整體,而有能力收集或處理大數據的往往是個體,個體的回報在整體的提升中並不容易獲得清晰體現。所以說現在大數據發展的瓶頸不是技術,而是背後所需要的分配關系的建立。這種關系理不順,數據就會停留在孤島層面,每個組織都有自己的東西,並把它命名為「大數據」。而為了理順這種關系則要回到一個非常經典的問題,「公地」到底可不可以建立。數據公地的設想大數據其實有點像公地,在經濟學里非常出名的一個論點是公地悲劇。《美國經濟史》舉了一個非常易懂的例子來說什麼是公地悲劇:…這些經濟推理命題有利於解釋集體所有制和產出的共享(平分或固定份額)如何導致「免費搭車者」問題。為了說明這一點,考慮共享土地所有權,且共同生產了100蒲式耳玉米的10個工人,平均每人消費10蒲式耳玉米。假設一個工人開始偷懶並將其勞動努力減半,從而導致產出減少5蒲式耳。由於產出共享制度的安排,偷懶者的消費量和其它工人一樣,現在都是9.5蒲式耳。盡管他的努力已經下降了50%,但他的消費量只下降了5%。偷懶者是在搭他人勞動的便車。…這背後有非常深刻的人性問題,即使我們可以通過努力協作創造更多的財富,個人也可以從中分享更多,但在群體里明顯的個人傾向則是自己工作更少但分享更多。這與囚徒困境其實是相通的。基於實物的世界裡眼下看不到徹底解決這問題的方法,只能依賴於某種被大家基本認可的分配秩序,比如:以前的血統現在的物競天擇,但基於比特的數字財富眼下看卻有解決這問題的可能。基於比特的數據與實物最大的區別是數據並非是你拿走我就沒有的東西,並且硬體的價格在飛速下降,開源又使數據的訪問工具基本免費。這幾者疊加在一起,使數據公地成為可能。這裡面很有意思的問題是如果大家更在意我拿到的東西是不是絕對值變大了那數據公地的形成可能性就大些,因為如果存在數據公地,那每個人(企業)一定收獲更多,但如果大家更在意我是不是比你多,那數據公地的建設就會多很多障礙,因為公地其實是讓相關人員站到同樣的競爭起點上。大數據的問題,在數據的使用上是技術問題,但在數據源上其實是社會經濟問題,後者更難,所以大數據應用的發展不取決於技術的發展而取決於社會經濟方式的變革速度。在有限的領域里,比如搜索、電商、雲計算,技術已經得到比較充分的發展,眼下來看誰付出誰受益的問題是把小數據變成大數據過程中最主要的問題。大數據的路往那裡走?數據的內在發展動力是數據越全價值越大,其實這也是一種網路效應,這種內在動力導致宏觀來看數據所有權的發展只有兩種趨勢:一種是像現在移動端一樣,每個人都有自己的私有數據源,接下來開始你死我活的競爭,最終有一家活下來,這也可以達成數據統一的終極目標。另一種則是在競爭中開始聯合,建設上面所說的數據公地。如前所述行業數據和全社會的數據性質上差別很大所以要分開來探討。對於行業數據而言,競爭對手間彼此的坦誠合作除非有極為特別的人物出現,否則是不太可能的。這種情況下最簡單的辦法是引入第三方。比如說每家運營商都握有幾乎所有網民的行動數據,但要想讓運營商彼此間開誠布公的合作把這些數據整合在一起創造某種價值,這就很難。這時候如果有第三方介入,制定好利益分配方案那就是可能的。如果這點可以達成,那唯一的關鍵點就是相應的商業模式是不是可以超越數據處理的成本。這點必須強調下的是,大數據的價值密度是很稀疏的,很多東西有價值但並不一定值得做,視頻網站之所以賺不到錢一個關鍵原因就是帶寬和存儲的成本比較高,而對大數據而言商業模式找不好,情形可能比視頻網站還差。挖礦的成本怎麼也要小於挖礦所得挖礦才有價值。上述問題在行業數據里可能問題還不是太大,一般來講行業數據的價值密度終究會大一些,並且因為相對比較垂直,總量終究有限制。所以大數據的行業應用比較容易發展。但對社會性的數據,這在很多時候就是個問題。我們都知道樣本的全面性比數據的多少更有價值,但是如果多是確保樣本全面性的唯一手段的話,那就意味必須有全的數據做一件事情才有意義。社會化的數據有兩種應用方向,一種就是企業可以搞定的比如Google,一種則是屬於社會層面,很難單獨屬於某個企業的比如智慧城市相關的人的活動數據。後者則需要上面所說的數據公地來做支撐。從數據的視角來看,現在有兩種數據存放形式:一種是Google這樣的企業擁有整個社會某個橫截面上的全部數據,這應該是種特例,並且數據會局限在公開信息;一種則是被割裂的各種與人行為相關的數據,比如購物相關的在電商,與人相關的在社交網路和IM,線下服務相關的則在O2O企業,鐵路相關的在12306等。Google這種擁有全的數據,但並不擁有人的行為,所以說Google這種企業相當於擁有整個社會的一個橫截面的數據。而所有其它企業則只擁有某個垂直領域的數據。如果依賴於企業做這種數據統一的嘗試,在前者就會有投資200億做O2O類的舉動,因為這會補全數據,在後者就會有做電商的想做社交,做社交的想做電商這類事發生。類似的故事還可以在終端上發生,所有這些行為的終極目標都是一家企業搞定所有這些事情,但這是不可能的,這種不可能還不單是經濟原因。而數據不能打通,那就只能在割裂的數據上做自以為是大數據的大數據。所以說這骨子裡是數據公地究竟能不能建立的問題,而要想建立數據公地,那至少要解決誰來做的問題,對此開源給出的啟示有兩點非常關鍵:第一這不能是個盈利組織;第二這要能獲得眾多企業的支持。因為數據會牽涉隱私,所以同開源相比那就一定還要有比較清晰的界定數據使用的規則。小結在有一種切實的辦法解決數據所有和使用權之前,大數據的應用應該還都是局部的。因為它的深度應用牽涉社會很多部分的彼此協調,所以這個過程可能是非常漫長的。這裡面有意思的事情是,大數據的出現直接推動了機器智能的發展,而機器智能產生影響的速度可能會遠快於大數據本身。

以上是小編為大家分享的關於大數據發展趨勢預測 該往哪裡走的相關內容,更多信息可以關注環球青藤分享更多干貨

❹ 大數據是根據什麼進行追蹤的

1、手機基站

通過手機基站來進行定位是如今最廣泛的一種定位方式,也是最准確的一種定位方式。只要使用手機,就會自動了解到你手機所使用的基站位置,從而獲取定位。你去過哪裡就會通過手機很具體的反應出來。

2、身份證

每個公民都有屬於自己的身份證,可以證明自己的身份,比如說要去外地出差或者旅遊,坐飛機或是坐火車都需要用身份證來買票,或者我們去一些地點需要刷身份證進入,這就是收集信息的一個過程。身份證也是大數據定位兄隱的一種方式,可以通過刷身份證的地點,了解到人的位置。

3、天網定位

隨著科技越來越發達,攝像頭隨處可見,不管是店鋪門口,還是街道上都能夠發現攝像頭。只要被這些攝像頭拍到,就可以清楚地記錄到你的行蹤,去過哪裡,從哪裡路過,清晰的對你進行定位。

4、車輛

如果平時駕駛車輛路過有攝像頭的地方,攝團塵櫻像頭也會拍攝到你所駕駛車輛的牌照以及車輛的牌子和顏色塌叢。所以通過車輛就可以對人進行定位,攝像頭會進行記錄。

❺ 大數據應用與哪些行業

大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。

1、製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

2、金融業:大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

3、汽車行業:利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

4、互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。

5、餐飲行業:利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。

6、電信行業:利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

7、能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。

8、物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。

9、城市管理:利用大數據實現智能交通、環保監測、城市規劃和智能安防。

10、生物醫學:大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。

11、公共安全領域:政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。

12、個人生活:大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。

大數據的價值遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。

(5)大數據是跟什麼走的擴展閱讀

七個典型的大數據應用案例

1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

2、Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。

3、沃爾瑪的搜索。這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。

4、快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。

5、Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。

6、PredPolInc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。

7、TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。

閱讀全文

與大數據是跟什麼走的相關的資料

熱點內容
換季產品怎麼玩 瀏覽:904
南充有哪些鄉土菜市場 瀏覽:482
神州買買車代理費多少 瀏覽:993
夜遊產品體系如何構建 瀏覽:142
怎麼讓公司的產品入駐自營超市 瀏覽:497
有什麼祛痘印好的產品 瀏覽:67
刷臉支付技術在哪裡 瀏覽:839
企業年審里的即時信息怎麼填 瀏覽:381
消防產品公司如何管理物料 瀏覽:98
三無產品索賠依據是什麼 瀏覽:202
期貨開戶用哪個交易所 瀏覽:107
如何打開施耐德程序 瀏覽:965
為什麼要解析串口數據 瀏覽:757
本月收入數據填錯怎麼辦 瀏覽:950
怎麼修改疫情數據可視化的格式 瀏覽:799
北京賣狗的市場在哪裡 瀏覽:826
平安的理財產品有哪些 瀏覽:129
現代產業技術創新包含什麼 瀏覽:22
邢台滴滴市場到底怎麼樣 瀏覽:689
如何完善汽車信息 瀏覽:169