⑴ 如何提高收集數據和分析數據的能力
大數據處理關鍵技術一般包括:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。
如何從大數據中採集出有用的信息已經是大數據發展的關鍵因素之一。
想要培養數據分析的能力,可以從兩部分來著手:一是數據分析方法論的建立,二是數據分析從入門到精通的知識學習。
理論:是進行分析的基礎
1)基礎的數據分析知識,至少知道如何做趨勢分析、比較分析和細分,不然拿到一份數據就無從下手;
2)基礎的統計學知識,至少基礎的統計量要認識,知道這些統計量的定義和適用條件,統計學方法可以讓分析過程更加嚴謹,結論更有說服力;
3)對數據的興趣,以及其它的知識多多益善,讓分析過程有趣起來。
實踐:可以說90%的分析能力都是靠實踐培養的
1)明確分析的目的。如果分析前沒有明確分析的最終目標,很容易被數據繞進去,最終自己都不知道自己得出的結論到底是用來幹嘛的;
2)多結合業務去看數據。數據從業務運營中來,分析當然要回歸到業務中去,多熟悉了解業務可以使數據看起來更加透徹;
3)了解數據的定義和獲取。最好從數據最初是怎麼獲取的開始了解,當然指標的統計邏輯和規則是必須熟記於心的,不然很容易就被數據給坑了;
4)最後就是不斷地看數據、分析數據,這是個必經的過程,往往一個工作經驗豐富的非數據分析的運營人員要比剛進來不久的數據分析師對數據的了解要深入得多,就是這個原因。
也可以採用第三方的大數據服務平台,觀向數據是一款整體的數據採集、分析、可視化系統,可以幫助企業品牌發展提供科學化決策。
⑵ 該如何用好大數據
該如何用好大數據
近一兩年來,大數據是一個被頻繁提及的詞彙。不管是近幾天麻涌舉行的五礦物流麻涌基地發布會上,還是在智博會配套活動中國(東莞)雲計算高峰論壇上,越來越多的企業和研究者對大數據產生了非常濃厚的興趣。越來越多的東莞企業表示想要做好大數據運營,但是,大數據要用好並不容易。
大數據是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據技術,是指從各種各樣類型的數據中,快速獲得有價值信息的能力。
大數據聽起來似乎很高深,但其實已經滲透到人們生活的方方面面。例如一個消費者在淘寶上搜索了泳鏡,接下來他在打開許多網站時都會看到游泳衣、游泳圈等相關產品的廣告。這,就是當前大數據營銷的一個典型應用場景。
前不久,陳國良和石鍾慈兩名專門研究雲計算和大數據的工程院院士在東莞進行了一次大數據的知識普及講座。
據陳國良院士介紹,2012年3月,美國總統奧巴馬在一次研究計劃上提出了大數據概念。「大數據」的說法由此被全球范圍採用,而在此前,國內的研究者一般稱其為天文數據、海量數據或者巨量數據。不管是物聯網設備的感測器、科學研究還是人們的日常生活,都會產生大量的數據。而善於用好大數據技術,則可以從這些數據中挖到「黃金」。
不過,陳國良也表示,大數據的結果很有價值,但千萬不能陷入大數據獨裁主義,人,才是大數據的第一要素。當然,要求所有企業都具有大數據分析能力。
陳國良所說的大數據分析能力,便是大數據的組成部分。隨著大數據的應用日漸廣泛,影響日漸深遠,大數據思維的重要性也日漸顯著。
大數據思維,就是能夠正確利用好大數據的思維方式。大數據並不是指任何決策都參考數據,也不是要求所有問題都足夠精準,更不是花巨資打造大數據系統或平台,而是在應該讓大數據出場的地方把大數據用好。
要用好大數據,首先應該採集大數據。與傳統的調查問卷等搜集信息數據的方式不同,互聯網時代的大數據採集是「無限的、無意識的、非結構化的」數據採集。各種紛繁復雜的行為數據以行為日誌的形式上傳到伺服器中,隨用隨取。此外,分析數據使用了專門的數據模型。最值得一提的是,大數據可以根據營銷、決策等特定問題,從資料庫中調取海量數據進行挖掘以完成數據驗證,甚至可以得出與常識或經驗判斷完全相異的結論出來。
不少業內人士表示,很多時候,大數據的價值正是體現在這樣與直觀判斷大相徑庭的地方。對此,陳國良也表示,「大數據分析結果有時候沒有理論支撐甚至無法證明,不過分析仍然有效,技術仍然在發展!」陳國良還為東莞有意進行大數據挖掘的企業支招說,大數據的獲取,不能依靠隨機采樣,也不能強求精確性,甚至分析結果也難以解釋其所以然,不過能用就好,以後可以慢慢再弄清其中的科學原因。
業內人士分析說,大數據的應用領域正在逐步增加。一方面,東莞企業可以通過大數據對用戶行為與特徵作出分析。通過大量數據可以分析出用戶的喜好與購買習慣,甚至做到「比用戶更了解用戶自己」。此外,通過大數據可以支撐精準營銷信息推送。讓最精確的信息傳遞到正好匹配的客戶手中。
另外,通過大數據可以讓營銷活動能夠與用戶能夠產生「會心一擊」的效果,這種基於海量數據的挖掘和匹配實現的精準信息,能夠讓企業有效地取得客戶的歡心。
在陳國良眼中,雲計算、物聯網以及大數據是三位一體的,伴隨著萬物互聯的趨勢以及雲計算逐步變得更加方便易得,價格低廉,大數據的應用場景以及應用的經濟類型也都將得到進一步的加強。
⑶ 如何正確認識大數據的價值和效益
1、數據使用必須承擔保護的責任與義務
我國數據流通與數據交易主要存在以下問題:數據源活性不夠,數據中介機構還處於起步階段;多源數據的匯集技術尤其是非結構化數據分析技術滯後;缺乏熟悉不同行業並掌握在特定領域使用數據技術的人才。
數據的價值在於融合與挖掘,數據流通、交易有利於促進數據的融合和挖掘,搞活數據從而產生效益。數據共享開放、流通交易和數據保護及數據安全對數據技術提出嚴峻挑戰,對法律的制定及執行提出了很高要求。為此,數據使用必須承擔保護的責任與義務。
⑷ 如何正確認識大數據的價值和效益
1、數據量大是大數據具有價值的前提。
當數據量不夠大時,它們只是離散的「碎片」,人們很難讀懂其背後的故事。隨著數據量不斷增加,達到並超過某個臨界值後,這些「碎片」就會在整體上呈現出規律性,並在一定程度上反映出數據背後的事物本質。
這表明,數據量大是數據具有價值的前提,大數據具有大價值。大數據的「大」是相對的,與所關注的問題相關。通常來說,分析和解決的問題越宏觀,所需要的數據量就越大。
2、數據關聯是大數據實現價值的基礎。
運用大數據解決的問題通常涉及多部門、多領域、多個體、多視角,單純的數據量的積累不一定能讓人認識事物的全局,只有將不同側面、不同局部的數據匯聚起來並加以關聯,才能產生對事物的整體性和本質性認識。
數據匯聚使數據可能產生價值,數據關聯使數據實現價值,因此必須推動數據開放共享。政府、企業是大數據的主要擁有者。要推動大數據轉化為發展動能,就要保障數據供給和合理合法開放共享。
3、計算分析使大數據最終產生價值。
大數據通常價值巨大但價值密度低,很難通過直接讀取提煉價值。只有通過綜合運用數學、統計學、計算機等工具進行大數據分析,才能使大數據產生價值,完成從數據到信息再到知識和決策的轉換。
大數據價值鏈包括數據採集、流通、儲存、分析與處理、應用等環節,其中分析與處理是核心。如果只存儲不分析,就相當於只買米不做飯,產生不了實際效益。
當前,我國大數據產業在某些環節(如儲存)過於集中,有產能過剩之虞,但在分析與處理環節的產能又嚴重不足,這應引起關注。還要看到,傳統用於分析數據的統計學方法和數據挖掘方法對於大數據並不適用,必須重建大數據的統計學基礎、計算基礎與數據挖掘方法基礎。
4、廣泛使用使大數據效益倍增。
大數據及其產品具有易復制、成本低、疊加升值、傳播升值等特點,能夠被廣泛、重復、疊加使用,具有較高的邊際效用和正外部性。同一組數據不僅可以在合理合法的前提下以較低成本提供給不同使用方,使單一數據服務多個主體。
而且還可以針對不同目的、使用不同方法進行分析,使單一數據產生多樣價值。因此,大數據能夠一次投入、反復使用,產生倍增效益,有利於提升各行各業應用數據解決困難和問題的能力。
5、大數據是新型生產要素和重要的基礎性戰略資源,蘊藏著巨大價值,經過深入挖掘並加以應用,能夠有力推動經濟轉型發展,重塑國家競爭優勢,提升國家治理現代化水平。
大數據是能夠靠制度、積累、科技撬動的,因而可以成為欠發達地區異軍突起的發展驅動力。大數據具有通用技術性,可以廣泛而深入地應用於企業生產、政府管理和社會治理、民生改善等各個領域。
產生難以估量的價值和效益。各級領導幹部、企業家、創業者乃至全民都應形成大數據思維,提高自覺、合法、有效利用大數據的意識,增強利用數據推進各項工作的本領,使大數據在經濟社會發展中發揮更大作用。
⑸ 如何培養數據意識
2022-02-24
現在是大數據時代,都在講演算法,那就更離不開數據。擁有數據意識,也更有利於我們去分辨,匯總,決策。
其實培養數據意識的核心,就是要想清楚目標,在拆解目標的過程中倒推需要的數據。
比如:目標是提高收入,怎麼倒推?
1,思考決定工資高低的因素:是自身的能力,能力越高,工資也越高;
2,思考提升能力的因素:能力提升,一定程度上取決於學習。
這樣倒推出來了,學習時長,學習效率就是數據,這樣就可以把它量化,每天通過幾個小時提高某項能力,來提高職場競爭力,從而提高工資。這樣核心數據就是學習時長,學習效率,關注並優化它即可。
即使不需要懂技術,也可以運用拆解目標,倒推數據的思維,一定程度的培養自己的數據意識。不要陷入獲取數據的細節中,不懂技術,可以通過其他方法獲取數據,保持拆解目標,倒推所需數據的習慣,可以培養出數據意識。