① 怎麼用spss分析三組數據的差異是否顯著
檢驗方式:
給出了兩組各 10 名品酒員對一批白葡萄酒和一批紅葡萄酒的品評結果, 以及這兩批葡萄酒的相應理化指標及釀酒葡萄的相應成分指標。 對兩組品酒員評判結果應用 t-檢驗分析判斷兩組評判結果的差異性。
數據管理:
1、超長變數名:在12版中,變數名已經最多可以為64個字元長度,13版中可能還要大大放寬這一限制,以達到對當今各種復雜數據倉庫更好的兼容性。
2、改進的Autorecode過程:該過程將可以使用自動編碼模版,從而用戶可以按自定義的順序,而不是默認的ASCII碼順序進行變數值的重編碼。另外,Autorecode過程將可以同時對多個變數進行重編碼,以提高分析效率。
3、改進的日期/時間函數:本次的改進將集中在使得兩個日期/時間差值的計算,以及對日期變數值的增減更為容易上。
② 怎麼用spss分析三組數據的差異是否顯著
、首先我們對上表數據進行細化,找到每組內受訪者的具體滿意度打分數值,而不是這個匯總後的得分值。
2、SPSS方差分析:
image
分析:比較均值,單因素方差分析
因變數列表:品類滿意度
因子:收入
選項:方差同質性檢驗
3、數據是否適合做方差分析
image
方差分析之前,需要進行可行性檢驗,原假設,各分組方差無差異。根據同質性檢驗可知,sig值0.453,為大概率,原假設成立,即不同分組之間同質,沒有顯著差異,可進行方差分析。
4、方差分析結果
image
原假設,各分組之間無差異。方差分析sig值0.194,大於小概率值0.05,為大概率,原假設成立,即不同收入水平分組之間在品類滿意度上並不沒有不同。不存在顯著差異。
5、用可視化圖來揭示原因
image
我們可以看到,每類收入者的滿意度得分都圍繞平均值上下波動,這表明不同收入者對品類的態度存在明顯差異,例如,同是高收入者,有的非常滿意,有的卻十分的不滿意。同組內的差異甚至高出不同收入者之間的差異,這一點可以通過方差分析中方差得以判斷。
因此說,收入水平並不是導致用戶對A賣場品類滿意度的關鍵因素。
可見,數據的表象往往迷惑人,尤其是綜合匯總後的平均值,通過對底層數據進行分組及方差分析則可以讓我們撥開雲霧,看到數據的本質。
同時,這個案例也告訴我們,在常規的報表分析當中,經常性的工作是對底層數據進行匯總分析,然後拿匯總數據用於決策,此時,非常容易就數字大小的對比而做出判斷,報表工作人員需要注意,需要養成用統計的理念和邏輯上報數據的結果。
打開CSDN,閱讀體驗更佳
Stata:多個變數組間均值\中位數差異檢驗
作者:韓少真(西北大學) || 劉婉青(西北大學) Stata 連享會: 知乎 | 簡書 | 碼雲 | CSDN 2019暑期Stata現場班,7.17-26日,北京,連玉君+劉瑞明 主講 Stata連享會 精品專題 || 精彩推文 文章目錄1. 問題背景1.1 期刊論文示例一1.2 期刊論文示例二1.3 期刊論文示例三2. Stata實現組間均值或中位數差異檢驗的常見...
瀏覽器打開
均值已知檢驗方差_SPSS篇—方差分析
昨天跟大家分享了如何用SPSS進行回歸分析,知道了回歸分析的用途以及使用的場景。今天跟大家分享的就是之前文章裡面出現很多次的一個分析—方差分析。方差分析又被稱作「F檢驗」或者「變異數分析」,主要是用於兩個及兩個以上樣本均值差異的顯著性檢驗。方差分析和回歸分析一樣,也有很多個分支。對於方差分析,一般我們是用來研究不同來源的變異對總變異的貢獻大小,從而確定可控因素對因變數的影響大小。我們今天通過一個例...
瀏覽器打開
相關推薦
雙因素方差分析_科研常用顯著性分析方法匯總及選擇(T檢驗,Mann-Whitney U test檢驗,方差分析等)...
科研常見的差異性分析方法匯總根據數據是否符合正態分布,分為:參數檢驗非參數檢驗非參數檢驗是在總體方差未知或知道甚少的情況下,利用樣本數據對總體分布形態等進行推斷的方法。由於非參數檢驗方法在推斷過程中不涉及有關總體分布的參數,因而得名為「非參數」檢驗。 參數檢驗(parameter test)全稱參數假設檢驗,是指對參數平均值、方差進行的統計檢驗。先由測得的樣本數據計算檢驗統計量,若計算的統計量值落...
瀏覽器打開
如何判斷組之間是否有顯著性差異?
怎麼知道組之間是否有顯著性差異? 方法:單因素方差分析;雙尾檢驗;K-S檢驗;x²檢驗;蒙特卡羅檢驗 1 K-S檢驗法介紹: 有人首先想到單因素方差分析或雙尾檢驗(2 tailed TEST)。其實這些是不準確的,最好採用Kolmogorov-Smirnov test(柯爾莫諾夫-斯米爾諾夫檢驗)來分析變數是否符合某種分布或比較兩組之間有無顯著性差異。(https://www.cnblog...
瀏覽器打開
均值已知檢驗方差_方差分析與R
1.什麼是方差分析?假設有多個總體(三個及以上),都是服從正態分布且方差相同。方差分析就是檢驗多個總體均值是否相等的統計方法。比如用三種雞飼料喂小雞,三個月後小雞的重量是隨機的,假設服從正態分布。我們自然就問,這三種雞飼料喂的小雞三個月以後重量的均值是否相同?從這個例子中我們可以看出,在假設其它條件相同的情況下,造成小雞三個月後平均重量不同的因素就是雞飼料。若三種雞飼料對小雞重量的影響效果相同,那...
瀏覽器打開
均值已知檢驗方差_方差分析不顯著就一定無差異嗎?
方差分析的零假設是:各組均值相等。這個「各組均值相等」如何理解?正確理解是:各組和所有組總均值相等,並不是真的「各組均值相等」。方差分析認為:各組和總均值無差異,那麼各組均值等於總均值,意味著各組均值相等。單因素方差分析大家應該都理解的比較好,我們可以看看單因素方差分析F檢驗統計量的分子核心部分:(各組均值-總均值)的平方。看到沒,減的是「總均值」。一般來說,如果各組和總均值無差異,