㈠ 大數據挖掘學習課程需要多久
大數據挖掘課程需要學習6個月左右。如需大數據挖掘培訓推薦選擇【達內教育】。
去培訓機構學習,可以從最基礎的開始,把基礎打牢固,然後再結合項目實踐,熟練精通數據挖掘。
【大數據挖掘】學習內容:
1、數據收集:分布式消息隊列Kafka、非關系型數據收集系統Flume關系型數據收集工具Sqoop與Canel;
2、大數據技術:Spark、Storm、Hadoop、Flink等;
3、數據存儲:分布式文件系統及分布式資料庫、數據存儲格式;
4、資源管理和服務協調:YARN、ZooKeeper。感興趣的話點擊此處,免費學習一下
想了解更多有關大數據挖掘培訓的相關信息,推薦咨詢【達內教育】。秉承「名師出高徒、高徒拿高薪」的教學理念,是達內公司確保教學質量的重要環節。作為美國上市職業教育公司,誠信經營,拒絕虛假宣傳是該機構集團的經營理念。該機構在學員報名之前完全公開所有授課講師的授課安排及背景資料,並與學員簽訂《指定授課講師承諾書》,確保學員利益。
達內IT培訓機構,試聽名額限時搶購。
㈡ 參加大數據學習一般需要多長時間
參加大數據學習一般需要多長時間?一般學習時間為4-6個月左右。主要看你有沒有Java和Linux基礎,如果有就可以直接進入大數據學習,學習時間4個月左右,如果你沒有Java和Linux
基礎,那麼學習時間就要6個月左右。
下面附上學習內容:
Java:大家都知道Java的方向有JavaSE、JavaEE、JavaME,學習大數據要學習那個方向呢?
只需要學習Java的標准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技術在大數據技術里用到的並不多,只需要了解就可以了,當然Java怎麼連接資料庫還是要知道的,像JDBC一定要掌握一下,有同學說Hibernate或Mybites也能連接資料庫啊,為什麼不學習一下,我這里不是說學這些不好,而是說學這些可能會用你很多時間,到最後工作中也不常用,我還沒看到誰做大數據處理用到這兩個東西的,當然你的精力很充足的話,可以學學Hibernate或Mybites的原理,不要只學API,這樣可以增加你對Java操作資料庫的理解,因為這兩個技術的核心就是Java的反射加上JDBC的各種使用。
Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
好說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。
Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。YARN是體現Hadoop平台概念的重要組件有了它大數據生態體系的其它軟體就能在hadoop上運行了,這樣就能更好的利用HDFS大存儲的優勢和節省更多的資源比如我們就不用再單獨建一個spark的集群了,讓它直接跑在現有的hadoop
yarn上面就可以了。其實把Hadoop的這些組件學明白你就能做大數據的處理了,只不過你現在還可能對"大數據"到底有多大還沒有個太清楚的概念,聽我的別糾結這個。等以後你工作了就會有很多場景遇到幾十T/幾百T大規模的數據,到時候你就不會覺得數據大真好,越大越有你頭疼的。當然別怕處理這么大規模的數據,因為這是你的價值所在,讓那些個搞Javaee的php的html5的和DBA的羨慕去吧。記住學到這里可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
Flink:剛才都說用Kafka能讓數據排上隊了,那不得按隊型給處理一波,怎麼處理用Flink一個個處理啊,來一個算一個速度賊快,這就是常說的流式計算。另外Flink還有一些小絕招,比如:不用你操心有的數據掉隊了怎麼辦,數據想聚在一起開個小會怎麼辦,數據隊型非得有序怎麼辦,壓力太大了怎麼辦,一不小心掉坑裡了人家還能幫你恢復。另外還有各種騷操作什麼序列化啊、排序啊、省內存啊甚至JVM怎麼調優都通通幫你想好了。