❶ 大數據時代帶來的大變革 改變人們生活
大數據時代帶來的大變革 改變人們生活
大數據時代的來臨,帶給我們眾多的沖擊,每個人都應當與時俱進、不斷提升,放棄殘缺的守舊思想,大膽接受新的挑戰。
探討大數據時代將給我們帶來哪些變革,首先要搞清楚什麼是大數據,其次,要釐清大數據會帶來哪些變革,最後,要思考如何應對大數據時代的挑戰。
什麼是大數據?
國際數據公司定義了大數據的四大特徵:海量的數據規模(vast)、快速的數據流轉和動態的數據體系(velocity)、多樣的數據類型(variety)和巨大的數據價值(value)。僅從海量的數據規模來看,全球IP流量達到1EB所需的時間,在2001年需要1年,在2013年僅需1天,到2016年則僅需半天。全球新產生的數據年增40%,全球信息總量每兩年就可翻番。
而根據2012年互聯網路數據中心發布的《數字宇宙2020》報告,2011年全球數據總量已達到1.87ZB(1ZB=10萬億億位元組),如果把這些數據刻成DVD,排起來的長度相當於從地球到月亮之間一個來回的距離,並且數據以每兩年翻一番的速度飛快增長。預計到2020年,全球數據總量將達到35~40ZB,10年間將增長20倍以上。
需要強調的是:所謂大數據並不僅僅是指海量數據,而更多的是指這些數據都是非結構化的、殘缺的、無法用傳統的方法進行處理的數據。也正是因為應用了大數據技術,美國谷歌公司才能比政府的公共衛生部門早兩周時間預告2009 年甲型H1N1流感的暴發。
釐清大數據帶來了哪些變革
就像電力技術的應用不僅僅是發電、輸電那麼簡單,而是引發了整個生產模式的變革一樣,基於互聯網技術而發展起來的「大數據」應用,將會對人們的生產過程和商品交換過程產生顛覆性影響,數據的挖掘和分析只是整個變革過程中的一個技術手段,而遠非變革的全部。「大數據」的本質是基於互聯網基礎上的信息化應用,其真正的「魔力」在於信息化與工業化的融合,使工業製造的生產效率得到大規模提升。
簡而言之,「大數據」並不能生產出新的物質產品,也不能創造出新的市場需求,但能夠讓生產力大幅提升。正如,《大數據時代:生活、工作與思維的大變革》作者肯尼思·庫克耶和維克托·邁爾-舍恩伯格指出:數據的方式出現了3個變化:第一,人們處理的數據從樣本數據變成全部數據;第二,由於是全樣本數據,人們不得不接受數據的混雜性,而放棄對精確性的追求;第三,人類通過對大數據的處理,放棄對因果關系的渴求,轉而關注相互聯系。這一切代表著人類告別總是試圖了解世界運轉方式背後深層原因的態度,而走向僅僅需要弄清現象之間的聯系以及利用這些信息來解決問題。
如何應對大數據帶來的挑戰
第一, 大數據將成為各類機構和組織,乃至國家層面重要的戰略資源。
在未來一段時間內,大數據將成為提升機構和公司競爭力的有力武器。從某一層面來講,企業與企業的競爭已經演變為數據的競爭,工業時代引以自豪的廠房與流水線,變成信息時代的伺服器。阿里巴巴集團的伺服器多達上萬台,而谷歌的伺服器超過了50萬台。重視數據資源的搜集、挖掘、分享與利用,成為當務之急。
第二,大數據的公開與分享成為大勢所趨,政府部門必須身先士卒。
2013年6月在英國北愛爾蘭召開G8會議,簽署了《開放數據憲章》,要求各國政府對數據分類,並且公開14類核心數據,包括:公司、犯罪與司法、地球觀測、教育、能源與環境、財政與合同、地理空間、全球發展、治理問責與民主、保健、科學與研究、統計、社會流動性與福利和交通運輸與基礎設施。同年7月,我國國務院就要求推進9個重點領域信息公開工作。正如李克強總理所強調的,社會信用體系建設包括政務誠信、商務誠信、社會誠信的建設,而政務誠信是「三大誠信」體系建設的核心,政府言而有信,才能為企業經營作出良好示範。作為市場監督和管理者,政府應首當其沖推進政務公開,建設誠信政府。為此,國務院通過《社會信用體系建設規劃綱要(2014~2020年)》,要求依法公開在行政管理中掌握的信用信息,提高決策透明度,以政務誠信示範引領全社會誠信建設。
第三,機構組織的變革與全球治理成為必然的選擇。
在工業時代,以高度的專業分工形成的韋伯式官僚制組織形態,確實具有較高的效率。然而,這種專業化分工一旦走向極致,就容易出現分工過細、龐大臃腫、條塊分割等弊端,無法有效應對新的挑戰。大數據技術提供了一種解困之道:在管理的流程中,管理對象和事務產生的數據流只遵循數據本身性質和管理的要求,而不考慮專業分工上的區隔,順應了全球治理的需要。
1990年,時任國際發展委員會主席勃蘭特,首次提出「全球治理」的概念。所謂全球治理,指的是通過具有約束力的國際規制(regimes)和有效的國際合作,解決全球性的政治、經濟、生態和安全問題,以維持正常的國際政治經濟秩序。為了順應全球治理的浪潮,我國應當構建自己的全球治理理論。深化對全球化和全球治理的研究,為世界貢獻中國對全球治理的先進理念。
當然,構建我國最新的全球治理理論,當務之急是構建我們的國家治理理論,夯實基礎。《中共中央關於全面深化改革若乾重大問題的決定》指出,「全面深化改革的總目標是完善和發展中國特色社會主義制度,推進國家治理體系和治理能力現代化」。這充分體現了與時俱進的治理理念,切中了我們國家運行中的核心問題。
❷ 工業大數據有哪些應用場景
1.加速產品立異
客戶與工業企業之間的交互和買賣行為將發生大量數據,挖掘和剖析這些客戶動態數據,可以幫助客戶參加到產品的需求剖析和產品設計等立異活動中,為產品立異作出貢獻。
2.產品毛病確診與猜測
這可以被用於產品售後服務與產品改善。無所不在的感測器、互聯網技術的引入使得產品毛病實時確診變為實際,大數據使用、建模與模擬技術則使得猜測動態性成為可能。
3.生產線的大數據使用
現代化工業製作生產線裝置有數以千計的小型感測器,來勘探溫度、壓力、熱能、振盪和雜訊。由於每隔幾秒就收集一次數據,使用這些數據可以完成許多方式的剖析,包括設備確診、用電量剖析、能耗剖析、質量事故剖析(包括違反生產規則、零部件毛病)等。
4.工業供應鏈剖析和優化
當時,大數據剖析已經是許多電子商務企業提升供應鏈競爭力的重要手法。例如,電子商務企業京東商城,經過大數據提早剖析和猜測各地產品需求量,然後提高配送和倉儲的效能,保證了次日貨到的客戶體會。
5.產品出售猜測與需求管理
經過大數據來剖析當時需求改變和組合方式。大數據是一個很好的出售剖析東西,經過歷史數據的多維度組合,可以看出區域性需求佔比和改變、產品品類的商場受歡迎程度以及最常見的組合方式、消費者的層次等,以此來調整產品策略和鋪貨策略。
6.生產計劃與排程
製作業面臨多品種小批量的生產模式,數據的精細化自動及時便利的收集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的歷史數據,關於需求快速呼應的APS來說,是一個巨大的挑戰。
關於工業大數據有哪些應用場景,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。