㈠ 製造企業如何借力工業大數據
製造企業如何借力工業大數據
工業大數據和原來的信息化有何區別?
簡單來說,1990年代以前,大部分企業都在做企業內部信息化,這被稱為第一次浪潮。1990年代以後,互聯網開始席捲全球,企業相繼進行互聯網化。而隨著信息化與工業化的深度融合,工業大數據悄然興起,這也將成為下一個提升製造業生產力的技術前沿。在清華大學工業大數據研究中心主任王建民看來,工業大數據即第三次工業變革,它以智能互聯的產品為核心載體,而不單純只是通過互聯網增值。
王建民認為,在製造業的利潤越來越低的情況下,工業大數據可以幫助中國企業提高產品在使用維護階段的利潤。最重要的是,利用數據進行跨界運營,能夠為企業帶來新的生存空間。
利用大數據搶占價值高地
為什麼工業大數據對當下的中國企業來說,有著如此深遠的意義?
事實上,在王建民看來,一個復雜裝備的生命周期分三個階段,即:開發製造階段(Beginning of Life,簡稱BOL)、使用維護階段(Middle of Life,簡稱MOL)、回收利用階段(即End of Life,簡稱EOL)。
原來,製造企業將重心放在開發製造階段,企業的核心目標就是將裝備設計製造出來。而產品售賣給消費者後,就和企業沒有關系或者變得無關緊要了。所以生命周期的第二、三階段,常常被企業忽略。但裝備的價值真正體現在用戶的使用體驗上,而不在於製造,盡管製造由質量決定。但消費者在使用階段的流暢程度,才能反映出產品的最終功效。
加工製造環節的確能夠產生很多利潤,但在當前環境下,生產製造的利潤越來越薄,使企業越來越難以為繼。而中國是一個製造大國,更是一個使用大國,製造業的興衰事關重大。王建民認為,只有利用大數據搶占價值高地,實現產品智能化,才能實現從「中國製造」到「中國創造」的轉變,從「生產型製造」到「服務型製造」轉變,這也是「中國製造2025」戰略的應有之義。
跨界運營是工業互聯網轉型的核心
和之前很多技術一樣,工業大數據並非橫空出世,而是一脈相承。但又有新的變化,這種新的變化,在王建民看來,其核心在於連接,將原來孤立的機器連接起來,將人和機器連接起來,將不同的企業、行業連接起來。
事實上,這種連接已經產生了巨大的價值,有很多企業已經開始實踐了。
例如:將人和產品聯系起來,可以實現產品創新。日本科研人員設計出一種新型汽車座椅,根據駕駛者的體重、壓力值等數據識別主人,以判斷駕駛者是否為主人,從而決定是否啟動。
又例如:將兩個不同領域連接起來,可以實現銷售模式的創新。歐洲人可以做到今天賣明天的風電,怎麼賣?他們根據一系列數據,對明天的風力精準地進行測算,從而實現當天交易。這是風電裝備在整個大氣環境下進行的跨界運營的絕佳案例。
還有一個例子,《哈佛商業評論》曾經發表過一篇文章叫《智慧的互聯產品》。美國人認為未來的工業產品應該分為五個階段,到第四個階段的時候,裝備、產品會進入到一個產品的系統階段,機器和機器之間可以對話和合作。比如在農業領域,播種器械、收獲器械會聯合起來到一個農場去作業。而終極階段是:農業機器的集群和天氣的數據,會和種子的數據、灌溉系統的數據聯合起來,通過全方位的連接來解決農業生產中的綠色節能問題。
王建民說,通過跨界運營來創新是工業互聯網轉型的核心。在使用階段做一個簡單的維修、更換配件,不管是預防性維修還是主動維修,都還處於工業互聯網的初級階段。只有通過數據進行跨界運營,才抓住了整個裝備製造業在服務階段轉型升級的核心。
工業大數據應避免的三個誤區
聽上去很美好的工業大數據,如何實踐呢?王建民梳理了三大誤區,以供企業參考:
一、維修=運行
在工業領域,維修和運行基本不會分開。但是在工業大數據里,二者是分開的。維修指的是,當產品性能下降的時候,通過更換零件或者其他手段,恢復其產品性能。而運行是指如何使用機器,使它產生價值。
二、產業大數據等同於消費大數據
工業大數據最核心的問題在於分析結果的可靠性。在消費大數據上,如果產品的廣告推薦能達到20‰的可靠性,就是搜索引擎的最好水平。但這一數據在工業領域,顯然遠遠不夠。因為在工業領域,往往是失之毫釐,差之千里。工業的應用場景對數據准確率的要求達到99.9%,甚至更高,否則就會造成嚴重的經濟損失乃至安全事故的發生。所以,王建民建議,從人員結構上來講,工業大數據需要數據和產業的人才一起來做。
三、採集的數據越多越好
對於企業而言,機器採集的數據有時候是一個災難,不是企業採集的所有數據都是有用的。不產生價值的數據就是垃圾信息,對於企業而言就是負擔。企業在收集數據之前,首要任務是給數據畫像,弄明白自己到底需要什麼樣的數據。
王建民認為,無論如何,大數據仍然要圍繞裝備增值服務的業務邏輯,在達到這個目的的過程中,讓數據發揮作用,而非簡單地只看到數據,而忽略了根本的邏輯。