① 大數據賦能:如何利用大數據驅動,精細化運營
互聯網時代,很明顯的一個特徵就是大多數信息都是以數據的形式進行記錄,大數據的產生,簡化了人們對世界的認知。通過將人的行為轉化成無數個可以量化的數據節點,從而為人提供了一個「數據畫像」。
大數據等技術的出現,給平台提供多樣化的營銷渠道,比如千人千面的商品推薦,C2M式的需求定製等。類似這樣的大數據應用,既能提高用戶體驗又能提昇平台效率。
1、大數據時代,數據如何驅動運營
在大數據的驅動下,呈現給用戶的內容都是經過演算法精密篩選的。
當你打開資訊類APP時,演算法根據你的歷史瀏覽類別算出你的閱讀偏好,據此向你推薦內容;當你打開短視頻APP時,你刷到的視頻都是你感興趣並且關注的標簽內容;當你使用打車軟體時,演算法給你推薦你可能會選擇的計程車和價格……
經過演算法推薦,用戶閱讀到的都是自己感興趣或與自己生活圈子相關的信息內容,不感興趣或者觀點相左的內容會被演算法過濾。
2、大數據識別有價值信息,輔助決策
對於大數據來說,它不僅面臨著如何識別一些重要的信息,而且還要將這些用於決策。
目前業內對於大數據的分析更多地注重在數據識別、儲存、定性描述相關分析等領域。
大數據分析的優點不在於「大」,而在於「准」,尤其在這個信息量大的時代,採用哪些數據進行分析,從而得出更准確的結論則更重要。
3、大數據連接、賦能、跨行業數字化
通過數據對不同行業賦能,幫助不同行業進行數據價值挖掘。傳統行業和數據行業結合的點在於將線上和線下的資源打通。例如新零售在大數據的賦能下,將廣告和營銷做結合,能夠清晰的看到你的用戶長成什麼樣。
4、如何解讀數據成了非常重要的技能
互聯網時代,人人都在說大數據、數據分析、數據運營。數據是為你的工作提供反饋和指導的工具,數據會告訴你問題出在哪裡;你想達到一個運營推廣目標,數據會告訴你途徑和方法。
5、企業如何利用大數據分析精準運營
無疑,大數據時代,數據資產已成為企業的核心競爭力。但數據在手,不會運用它,就會變得沒有價值。在當下企業數字化浪潮中,數據是企業轉型的基礎元素,如何將企業不同業務、類型的數據應用起來,推動企業運營,增加收入、降低成本、提高效率,控制風險等,是很多企業面臨的難點。
數據對運營的重要性已不言而喻,互聯網平台更是以數據驅動運營。產品研發從立項開始已經受到數據的驅動,而運營過程中的產品設計優化、市場渠道推廣、用戶需求、用戶行為和用戶價值等運營活動更離不開數據。
那麼,數據從何而來呢?
構建數據需求: 構建平台關心的數據需求,圍繞著用戶的需求展開,通過數據賣點制定重要事件的採集。可以從數據上,明確看到你的用戶增加、流失、渠道來源,從而幫助你做更好的數據管理,提升投放效率。
數據報表呈現: 數據採集完之後通過動態計算,形成報表,了解你關心數據的升降,你的運營、產品是否有效提升,都能在報表數據得到體現。
在精細化運營的大背景下,學會用數據分析來弄清用戶從哪來、對什麼感興趣、為什麼流失尤為重要。
01、用戶分群,尋找更多的核心用戶
用戶分群本質來上來說,就是將用戶分割成很多的群體,詳細的看每個群體用戶特徵。最經典的用戶模型是R(最近購買時間)F(頻次)M(消費金額),三個維度畫出九宮格立體的象限,了解你最高價值客戶的分布和特徵,輔助你進行決策。同時,通過高活躍核心用戶的運營,能夠幫助你理解你的客戶。
02、營銷轉化漏斗分析
互聯網營銷就像個漏斗,線上曝光後,客戶在瀏覽所發布的內容時,被層層過濾和篩選,沒有需求的、與目標客群不符的都會離開,直到意向客戶的預約。
03、客戶瀏覽來源分析
互聯網營銷要在線上的各個渠道曝光,建立線上營銷矩陣,官網、APP、公眾號、小程序、朋友圈等等,哪個渠道的推廣效果好,客戶瀏覽多,對後期的投放具有非常重要的指導意義,更好的發揮自身的優勢,同時彌補短板。
互聯網運營是個循序漸進的過程,大數據分析可以幫助你加快和不斷完善這個過程。我們來看看中移互聯網大數據如何通過大數據技術分析,真正從數據「觸摸」獲得實際價值。
中移互聯網大數據平台-利用數據驅動運營
中移互聯網大數據產品有數通過專業的SDK數據採集,經過大數據平台服務分析,提供專業的運營數據分析、用戶畫像分析、渠道分析、以及自定義事件分析等,實現數據化管理與運營。
幫助企業洞察用戶畫像和行為,根據用戶畫像結合實時用戶數據,精準定位目標用戶,實時了解用戶行為變化,從中發現用戶需求的改變,及時調整運營策略,降低業務推廣成本,實現效益最大化。
幫助企業隨時掌握各項數據,包括應用分析和網頁分析(含H5),提供全面准確的運營分析、用戶分析、渠道分析等系列服務,並輸出相應的數據報表。完美的解決了企業無法獲取應用或網頁運營分析數據、無法分析渠道投放效果、無法統計應用收入情況等疑難問題。
② 微信運營該怎麼用數據分析來驅動
微信運營數據分析主要集中於:用戶分析、圖文分析、流量分析、菜單分析、活動分析。
用戶分析主要包含用戶增長(包括關注、取關、累計人數等)、用戶屬性(後台的數據包括性別、省份等信息)。
圖文分析:主要包含主要圖文頁閱讀、原文頁閱讀、互動數據(分享、轉發、評論、收藏等)。
流量分析:主要是用戶通過什麼渠道關注公眾號的(主要可以輔助你了解怎麼去推廣你的公眾號)、閱讀圖文的流量都來自哪些渠道。
菜單分析:一般公眾號菜單都設置了網站、平台需要突出的內容,需要展示給用戶看的內容,所以菜單的點擊情況也顯得很重要。
活動分析:要了解活動單條的閱讀量、曝光量、互動等數據,並和平日的平均閱讀量、曝光量、互動等數據做個對比;
以下是我自己之前做的一些圖表分析,樓主可以看看~(希望可以採納)