⑴ 跪求啊,如何處理生活中的數據,聯系現實情況,用模型或數學觀點把問題闡述清楚《趣味數學的論文》。
樓主,你好:
你要說的其實是一個數學建模的問題。下面我就替分析一下,數學建模的常用模型以及
一般步驟和相關內容摘要:
數學作為現代科學的一種工具和手段,要了解什麼是數學模型和數學建模,了解數學建模一般方法及步驟。
關鍵詞:
數學模型、數學建模、實際問題
伴隨著當今社會的科學技術的飛速發展,數學已經滲透到各個領域,數學建模也顯得尤為重要。數學建模在人們生活中扮演著重要的角色,而且隨著計算機技術的發展,數學建模更是在人類的活動中起著重要作用,數學建模也更好的為人類服務。
一、數學模型
數學模型是對於現實世界的一個特定對象,一個特定目的,根據特有的內在規律,做出一些必要的假設,運用適當的數學工具,得到一個數學結構.
簡單地說:就是系統的某種特徵的本質的數學表達式(或是用數學術語對部分現實世界的描述),即用數學式子(如函數,圖形,代數方程,微分方程,積分方程,差分方程等)來描述(表述,模擬)所研究的客觀對象或系統在某一方面的存在規律.
隨著社會的發展,生物,醫學,社會,經濟……,各學科,各行業都涌現現出大量的實際課題,急待人們去研究,去解決.但是,社會對數學的需求並不只是需要數學家和專門從事數學研究的人才,而更大量的是需要在各部門中從事實際工作的人善於運用數學知識及數學的思維方法來解決他們每天面臨的大量的實際問題,取得經濟效益和社會效益.他們不是為了應用數學知識而尋找實際問題(就像在學校里做數學應用題),而是為了解決實際問題而需要用到數學.而且不止是要用到數學,很可能還要用到別的學科,領域的知識,要用到工作經驗和常識.特別是在現代社會,要真正解決一個實際問題幾乎都離不開計算機.可以這樣說,在實際工作中遇到的問題,完全純粹的只用現成的數學知識就能解決的問題幾乎是沒有的.你所能遇到的都是數學和其他東西混雜在一起的問題,不是"干凈的"數學,而是"臟"的數學.其中的數學奧妙不是明擺在那裡等著你去解決,而是暗藏在深處等著你去發現.也就是說,你要對復雜的實際問題進行分析,發現其中的可以用數學語言來描述的關系或規律,把這個實際問題化成一個數學問題,這就稱為數學模型.
數學模型具有下列特徵:數學模型的一個重要特徵是高度的抽象性.通過數學模型能夠將形象思維轉化為抽象思維,從而可以突破實際系統的約束,運用已有的數學研究成果對研究對象進行深入的研究.數學模型的另一個特徵是經濟性.用數學模型研究不需要過多的專用設備和工具,可以節省大量的設備運行和維護費用,用數學模型可以大大加快研究工作的進度,縮短研究周期,特別是在電子計算機得到廣泛應用的今天,這個優越性就更為突出.但是,數學模型具有局限性,在簡化和抽象過程中必然造成某些失真.所謂"模型就是模型"(而不是原型),即是指該性質.
二、數學建模
數學建模是利用數學方法解決實際問題的一種實踐.即通過抽象,簡化,假設,引進變數等處理過程後,將實際問題用數學方式表達,建立起數學模型,然後運用先進的數學方法及計算機技術進行求解.簡而言之,建立數學模型的這個過程就稱為數學建模.
模型是客觀實體有關屬性的模擬.陳列在櫥窗中的飛機模型外形應當象真正的飛機,至於它是否真的能飛則無關緊要;然而參加航模比賽的飛機模型則全然不同,如果飛行性能不佳,外形再象飛機,也不能算是一個好的模型.模型不一定是對實體的一種仿照,也可以是對實體的某些基本屬性的抽象,例如,一張地質圖並不需要用實物來模擬,它可以用抽象的符號,文字和數字來反映出該地區的地質結構.數學模型也是一種模擬,是用數學符號,數學式子,程序,圖形等對實際課題本質屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略.數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識.這種應用知識從實際課題中抽象,提煉出數學模型的過程就稱為數學建模.實際問題中有許多因素,在建立數學模型時你不可能,也沒有必要把它們毫無遺漏地全部加以考慮,只能考慮其中的最主要的因素,舍棄其中的次要因素.數學模型建立起來了,實際問題化成了數學問題,就可以用數學工具,數學方法去解答這個實際問題.如果有現成的數學工具當然好.如果沒有現成的數學工具,就促使數學家們尋找和發展出新的數學工具去解決它,這又推動了數學本身的發展.例如,開普勒由行星運行的觀測數據總結出開普勒三定律,牛頓試圖用自己發現的力學定律去解釋它,但當時已有的數學工具是不夠用的,這促使了微積分的發明.求解數學模型,除了用到數學推理以外,通常還要處理大量數據,進行大量計算,這在電子計算機發明之前是很難實現的.因此,很多數學模型,盡管從數學理論上解決了,但由於計算量太大而沒法得到有用的結果,還是只有束之高閣.而電子計算機的出現和迅速發展,給用數學模型解決實際問題打開了廣闊的道路.而在現在,要真正解決一個實際問題,離了計算機幾乎是不行的.數學模型建立起來了,也用數學方法或數值方法求出了解答,是不是就萬事大吉了呢 不是.既然數學模型只能近似地反映實際問題中的關系和規律,到底反映得好不好,還需要接受檢驗,如果數學模型建立得不好,沒有正確地描述所給的實際問題,數學解答再正確也是沒有用的.因此,在得出數學解答之後還要讓所得的結論接受實際的檢驗,看它是否合理,是否可行,等等.如果不符合實際,還應設法找出原因,修改原來的模型,重新求解和檢驗,直到比較合理可行,才能算是得到了一個解答,可以先付諸實施.但是,十全十美的答案是沒有的,已得到的解答仍有改進的餘地,可以根據實際情況,或者繼續研究和改進;或者暫時告一段落,待將來有新的情況和要求後再作改進.
應用數學知識去研究和和解決實際問題,遇到的第一項工作就是建立恰當的數學模型.從這一意義上講,可以說數學建模是一切科學研究的基礎.沒有一個較好的數學模型就不可能得到較好的研究結果,所以,建立一個較好的數學模型乃是解決實際問題的關鍵之一.數學建模將各種知識綜合應用於解決實際問題中,是培養和提高同學們應用所學知識分析問題,解決問題的能力的必備手段之一.
三、數學建模的一般方法
建立數學模型的方法並沒有一定的模式,但一個理想的模型應能反映系統的全部重要特徵:模型的可靠性和模型的使用性
建模的一般方法:
1.機理分析
機理分析就是根據對現實對象特性的認識,分析其因果關系,找出反映內部機理的規律,所建立的模型常有明確的物理或現實意義.
(1) 比例分析法--建立變數之間函數關系的最基本最常用的方法.
(2) 代數方法--求解離散問題(離散的數據,符號,圖形)的主要方法.
(3) 邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際
問題,在決策,對策等學科中得到廣泛應用.
(4) 常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"
的表達式.
(5) 偏微分方程--解決因變數與兩個以上自變數之間的變化規律.
2.測試分析方法
測試分析方法就是將研究對象視為一個"黑箱"系統,內部機理無法直接尋求,通過測量系統的輸入輸出數據,並以此為基礎運用統計分析方法,按照事先確定的准則在某一類模型中選出一個數據擬合得最好的模型.
(1) 回歸分析法--用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法.
(2) 時序分析法--處理的是動態的相關數據,又稱為過程統計方法.
(3) 回歸分析法--用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法.
(4) 時序分析法--處理的是動態的相關數據,又稱為過程統計方法.
將這兩種方法結合起來使用,即用機理分析方法建立模型的結構,用系統測試方法來確定模型的參數,也是常用的建模方法, 在實際過程中用那一種方法建模主要是根據我們對研究對象的了解程度和建模目的來決定.機理分析法建模的具體步驟大致可見左圖.
3.模擬和其他方法
(1) 計算機模擬(模擬)--實質上是統計估計方法,等效於抽樣試驗.
① 離散系統模擬--有一組狀態變數.
② 連續系統模擬--有解析表達式或系統結構圖.
(2) 因子試驗法--在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構.
(3) 人工現實法--基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的可能變化,人為地組成一個系統.(參見:齊歡《數學模型方法》,華中理工大學出版社,1996)
四、數學模型的分類
數學模型可以按照不同的方式分類,下面介紹常用的幾種.
1.按照模型的應用領域(或所屬學科)分:如人口模型,交通模型,環境模型,生態模型,城鎮規劃模型,水資源模型,再生資源利用模型,污染模型等.范疇更大一些則形成許多邊緣學科如生物數學,醫學數學,地質數學,數量經濟學,數學社會學等.
2.按照建立模型的數學方法(或所屬數學分支)分:如初等數學模型,幾何模型,微分方程模型,圖論模型,馬氏鏈模型,規劃論模型等.
按第一種方法分類的數學模型教科書中,著重於某一專門領域中用不同方法建立模型,而按第二種方法分類的書里,是用屬於不同領域的現成的數學模型來解釋某種數學技巧的應用.在本書中我們重點放在如何應用讀者已具備的基本數學知識在各個不同領域中建模.
3.按照模型的表現特性又有幾種分法:
確定性模型和隨機性模型 取決於是否考慮隨機因素的影響.近年來隨著數學的發展,又有所謂突變性模型和模糊性模型.
靜態模型和動態模型 取決於是否考慮時間因素引起的變化.
線性模型和非線性模型 取決於模型的基本關系,如微分方程是否是線性的.
離散模型和連續模型 指模型中的變數(主要是時間變數)取為離散還是連續的.
雖然從本質上講大多數實際問題是隨機性的,動態的,非線性的,但是由於確定性,靜態,線性模型容易處理,並且往往可以作為初步的近似來解決問題,所以建模時常先考慮確定性,靜態,線性模型.連續模型便於利用微積分方法求解,作理論分析,而離散模型便於在計算機上作數值計算,所以用哪種模型要看具體問題而定.在具體的建模過程中將連續模型離散化,或將離散變數視作連續,也是常採用的方法.
4.按照建模目的分:有描述模型,分析模型,預報模型,優化模型,決策模型,控制模型等.
5.按照對模型結構的了解程度分:有所謂白箱模型,灰箱模型,黑箱模型.這是把研究對象比喻成一隻箱子里的機關,要通過建模來揭示它的奧妙.白箱主要包括用力學,熱學,電學等一些機理相當清楚的學科描述的現象以及相應的工程技術問題,這方面的模型大多已經基本確定,還需深入研究的主要是優化設計和控制等問題了.灰箱主要指生態,氣象,經濟,交通等領域中機理尚不十分清楚的現象,在建立和改善模型方面都還不同程度地有許多工作要做.至於黑箱則主要指生命科學和社會科學等領域中一些機理(數量關系方面)很不清楚的現象.有些工程技術問題雖然主要基於物理,化學原理,但由於因素眾多,關系復雜和觀測困難等原因也常作為灰箱或黑箱模型處理.當然,白,灰,黑之間並沒有明顯的界限,而且隨著科學技術的發展,箱子的"顏色"必然是逐漸由暗變亮的.
五、數學建模的一般步驟
建模的步驟一般分為下列幾步:
1.模型准備.首先要了解問題的實際背景,明確題目的要求,搜集各種必要的信息.
2.模型假設.在明確建模目的,掌握必要資料的基礎上,通過對資料的分析計算,找出起主要作用的因素,經必要的精煉,簡化,提出若干符合客觀實際的假設,使問題的主要特徵凸現出來,忽略問題的次要方面.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理,化學,生物,經濟等方面的知識,又要充分發揮想像力,洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化,均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣.
3.模型構成.根據所作的假設以及事物之間的聯系, 利用適當的數學工具去刻劃各變數之間的關系,建立相應的數學結構――即建立數學模型.把問題化為數學問題.要注意盡量採取簡單的數學工具,因為簡單的數學模型往往更能反映事物的本質,而且也容易使更多的人掌握和使用.
4.模型求解.利用已知的數學方法來求解上一步所得到的數學問題,這時往往還要作出進一步的簡化或假設.在難以得出解析解時,也應當藉助計算機求出數值解.
5.模型分析.對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析,模型對數據的穩定性或靈敏性分析等.
6.模型檢驗.分析所得結果的實際意義,與實際情況進行比較,看是否符合實際,如果結果不夠理想,應該修改,補充假設或重新建模,有些模型需要經過幾次反復,不斷完善.
7.模型應用.所建立的模型必須在實際中應用才能產生效益,在應用中不斷改進和完善.應用的方式自然取決於問題的性質和建模的目的.
說了這么多,希望對你能有所啟發作用。