『壹』 大數據未來的發展前景怎麼樣
目前,我國大數據企業分布在產業鏈各個環節,包括大數據基礎的硬體、軟體支撐與大數據服務。行業龍頭企業均專注其重點布局領域,在各個方向擁有明顯的特有優勢。在區域分布方面,中國大數據企業較為集中,主要分布在京津冀與東部沿海地區。
行業主要上市公司:易華錄(300212)、美亞柏科(300188)、海量數據(603138)、同有科技(300302)、海康威視(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科創信息(300730)、神州泰岳(300002)、藍色游標(300058)等
本文核心數據:大數據、競爭層次、產業結構、應用領域分布、區域集中度、業務競爭力、五力模型分析等
1、中國大數據行業產業鏈各環節競爭情況
目前,我國的大數據產業尚處於初級建設階段,從其細分領域來看,大數據產業可劃分為大數據基礎支撐設施、應用軟體以及大數據服務三大子行業。中國大數據代表性企業分布在各個子行業,基礎支撐層主要代表廠商有同有科技與歐比特等;專門研發大數據相關軟體的代表性企業有常山北明、思特奇與四維圖新等;科創信息與神州泰岳等企業則專注於大數據服務。另外,行業的龍頭企業如美亞柏科與易華錄等,業務布局覆蓋整條大數據產業鏈。
更多行業相關數據請參考前瞻產業研究院《中國大數據產業發展前景與投資戰略規劃分析報告》。
『貳』 找房子的話,哪個APP比較好用啊
現在網路發展迅速,找房子大多都在網上看。許多找房的軟體應運而生,比如58同城,安居客,貝殼,懂房帝等等。
總之,我感覺懂房帝這個APP很貼心的為找房者著想。我也通過仔細尋找到了合適的房子。
『叄』 大數據對城市規劃將有怎樣的影響
一、大數據時代城市管理的機遇:首先,有利於數字化城市建設。城市化過程中出現的管理問題,傳統的城市管理方式早已對我國出現的城市問題束手無策,在大數據時代到來的背景下,數字化城市建設就呼之欲出。其次,有利於電子政務建設。長期以來,我國政府在處理公共事務時都基本採用了傳統的處理方式,紙質化的模式占據了主要地位。隨著信息技術的不斷更新以及大數據時代的到來,電子政務也隨之應運而生。由於大數據時代的特點以及不斷更新發展,電子政務的形式也不斷得到更新。最後,有利於智慧城市建設。智慧城市建設則是在大數據技術上產生的城市建設和管理方案。可見,大數據時代的到來更加有利於我國的智慧城市建設,為智慧城市的最終建成提供真實可靠的信息基礎。會在一定程度上難以實現真正共享。另外,因為信息化很不平衡,各地各部門使用的信息技術標准很難統一,最後導致數據孤島的現象也並非個例。二、大數據時代城市管理的挑戰:大數據時代,機遇存在的同時也不可避免會遇到許多挑戰,數據開放不足、數據共享不足、數據質量不優等等都面臨著嚴峻的挑戰。首先,數據開放不足。數據是信息的重要載體,信息的公開在一定意義上就是數據的公開。在所有的數據公開中,政府相關數據公開尤為引人矚目。國外早就對數據公開確立了「公開為原則,不公開為例外」的原則,我國也有類似規定,但是真實執行情況令人堪憂。其次,數據共享不足。就目前來看,誰掌握了大量真實可靠的信息,誰就掌握了主動權,信息在一定程度上就是權威的象徵,權力和利益的象徵。再者,政府各部門大部分存在利己傾向,信息就會在一定程度上難以實現真正共享。另外,因為信息化很不平衡,各地各部門使用的信息技術標准很難統一,最後導致數據孤島的現象也並非個例。然後,數據質量不優。數據質量問題直接影響依靠數據獲得的信息的真實有效性,最終影響整體決策的有效性。數據質量主要包括數據的真實性、完整性和有效性。數據在收集、整合、存儲和使用四個階段當中,每個階段都極有可能出現數據質量問題。在我國城市管理中,各級各部門每天都會面對大量繁瑣的數據,數據收集渠道主要有下級單位上報數據、調查統計、普查等等,每一個渠道也同樣會有很多因素影響數據質量。
『肆』 大數據選址是如何實現的
大數據選址為零售業創業者獲得了深刻、全面的洞察能力,並提供了前所未有的空間與潛力。
何為大數據選址?
大數據時代下的精準選址是指通過大數據進行整合分析,獲取用戶的喜好和行為需求,對商圈消費群體的購買力進行分析,找出適合店面的絕佳位置。
大數據精準選址的核心可以概括為幾大關鍵詞:用戶、需求、峰值以及熱力分布。
以往的店面選址方式,是先根據當地的城市,對城市商圈、人口流動量、周圍的小區、以及實際住戶量等等, 做出詳細的對比和考察。然後再通過自身的經濟情況,選出一個自己能夠承擔得了,且地段好的店面位置。
而大數據選址,則為店面選址制定了更加詳細周密的計劃,將選址細化為兩個流程。
第一步先鎖定商圈,選址系統內有著全國熱力值分布的整合數據,系統根據加盟商提供的區域,根據外賣峰值的數據進行按比例分成,通過區域內外賣的需求量鎖定商圈。
根據外賣峰值鎖定商圈是有一定的科學依據,據研究發現,人們在追求高效率的生活中,存在一個就近原則。在食客選擇外賣的時候,無論是在配送時間或者是距離,都是優先考慮到的問題。
外賣峰值高的商圈有著大量的消費群體,也就蘊含著巨大的商機,而用外賣反襯堂食,在日常營業中有效的引流,更能刺激消費。
在鎖定好商圈以後,第二步就是確定店面的位置了,營運師傅會親自上門進行考察,對鎖定的商圈進行分析。
根據不同項目所針對的消費群體以及加盟商自身的經濟狀況,選出一個客流量旺盛且地段好的店面位置。
開啟餐飲作為最早一批大數據選址系統的嘗試者,在8月份正式全面上線,上線一月之內就受到其合作商的一致好評,幫助了加盟商快速精確地確定店面,縮短了開業前的准備時間。實踐證明,大數據選址系統確確實實存在著優越性!
大數據選址系統之所以受到合作商的關注,是因為他們深知選址的重要性。對開店創業者來說,選址關系著店鋪的發展前途,關系著店鋪經營目標的實現,關系著市場的火爆程度,還關系著顧客需求的滿足。可以說,做好了選址,開店創業就成功了一半。
阿拉丁智店「慧選址」在國內獨家實現了店鋪選址相關所有權威數據源的集成和整合。
數據方面,基於三大運營商15億去標識化的手機信令數據、BAT網民上網和搜索特徵數據、全國銀行卡消費數據,以及全國寫字樓數據、小區數據和全量POI數據,阿拉丁智店「慧選址」實現了任選地理區域全量用戶全時段、全方位覆蓋。通過3700個用戶標簽,可以精準篩選和鎖定目標客群。目前,我們日處理5480億條上網記錄信息、670億位置記錄信息,成功識別4200個手機品牌、20萬個互聯網產品、7000餘款APP、10.5萬個終端型號和4億個URL。
選址演算法和模型方面,我們通過核密度模型、空間插值模型、ODPA模型、力導向布局模型、商圈分析模型、價值因素模型等經典演算法和模型的開發,為零售企業的選址提供了智能化保障。
目前,阿拉丁智店已經為麥當勞、星巴克、工商銀行、武漢某知名連鎖超市、中國福彩、殘聯等上千家政府機構和企業提供了智能選址服務,取得了明顯收益和效果,受到客戶的高度評價。
『伍』 如何通過大數據分析做市場調研
大數據時代新的市場研究方法使「無干擾」真實還原消費過程成為可能,智能化的信息處理技術使低成本、大樣本的定量調研成為現實,這將推動消費行為及消費心理研究達到一個新的高度,幫助快速消費品企業更為精準地捕捉商機。大數據時代的市場研究方法主要體現在以下四個方面。
1.基於互聯網進行市場調研提高了效率,降低了成本
網路調研具有傳統調研方法無可比擬的便捷性和經濟性。快速消費品企業在其門戶網站建立市場調研板塊,再將新產品郵寄給消費者,消費者試用後只要在網站上點擊即可輕松完成問卷填寫,其便利性大大降低了市場調研的人力和物力投入,也使得消費者更樂於參與市場調研。同時,網路調研的互動性使得企業在新產品尚處於概念階段即可利用3D擬真技術進行產品測試,通過與消費者互動,讓消費者直接參與產品研發,從而更好地滿足市場需求。
2. 挖掘網路社交平台信息成為研究消費態度及心理的新手段
QQ、微博、微信等社交平台已日漸成為新生代消費群體不可或缺的社交工具,快速消費品的消費者往往有著極高的從眾性,因此針對社交平台的信息挖掘成為研究消費潮流趨勢的新手段。例如,通過微博評論可以統計分析消費者對某種功能型產品的興趣及偏好,這對研究消費態度及心理有非常大的幫助。更重要的是,這類信息屬於消費者主動披露,與訪談形式的被動挖掘相比信息的真實性更高。
3. 移動終端提供了實時、動態的消費者信息
隨著3G網路及智能手機普及,市場研究已滲透到移動終端領域。大量的手機APP應用(例如二維碼掃描等)為實時採集消費信息提供了可能性,移動終端的信息分析在購買時點、產品滲透率及回購率、獎勵促銷效果評估等方面將發揮不可估量的作用。
4. 零售終端信息採集系統幫助企業了解市場
目前,PC-POS系統在零售終端得到了廣泛的應用,只要掃描產品條形碼,消費者購買的產品名稱、規格、購進價、零售價、購買地點等信息就可以輕松採集。通過構建完整的零售終端信息採集系統,快速消費品企業可以掌握商業渠道的動態信息,適時調整營銷策略。
環顧四周,在每個行業中,大數據的增長正在改變我們收集、存儲、分析和應用數據的方式。正如很多公司目前正在收集整理的那樣,大家面臨的共同問題是智能化信息採集、儲存及分析。
l 超大容量的數據倉庫。數據倉庫具有容量大、主題明確、高度集成、相對穩定、反映歷史變化等特點,可以有效地支撐快速消費品企業進行大數據分析與應用。數據倉庫可以更有效地挖掘數據資源,並可以按照日、周、月、季、年等周期提供分析報表,有助於營銷人員更有效地制定營銷戰略。
l 專業、高效的搜索引擎。旅遊搜索、博客搜索、購物搜索、在線黃頁搜索等專業搜索引擎已經得到了廣泛應用,快速消費品企業可以根據自己的特點構建專業化的搜索引擎,對相關的企業信息、產品信息、消費者評價信息、商業服務信息等數據進行智能化檢索、分類及搜集,形成高度專業化、綜合性的商業搜索引擎。
l 基於雲計算的數學分析模型。市場研究的關鍵是洞察消費者需求,基於雲計算的數學分析模型可以將碎片化信息還原為完整的消費過程信息鏈條,更好地幫助營銷人員研究消費行為及消費心理。這些碎片化的信息包括消費者在不同時間、不同地點、不同網路應用上發布的消費價值觀信息、購買信息、產品評論信息等。基於雲計算的智能化分析,一方面可以幫助市場研究人員對消費行為及消費心理進行綜合分析,另一方雲計算成本低、效率高的特點非常適合快速消費品企業數據量龐大的特性。
傳統的市場研究包括定性研究及定量研究,以座談會為主的定性研究受制於主持人的訪談技巧,以街頭攔截訪問為主的定量研究雖然以嚴謹的抽樣理論為基礎,但同樣不能完全代表總體的客觀情況。而大數據時代革命性的調研方法為市場研究人員提供了以「隱形人」身份觀察消費者的可能性,超大樣本量的統計分析使得研究成果更接近市場的真實狀態。
與此同時,大數據時代的新方法、新手段也帶來新的問題,一是如何智能化檢索及分析文本、圖形、視頻等非量化數據,二是如何防止過度採集信息,充分保護消費者隱私。雖然目前仍然有一定的技術障礙,但不可否認的是大數據市場研究有著無限廣闊的應用前景。