⑴ 數據分析的基本方法有哪些
數據分析的三個常用方法:
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
⑵ 常見的收集數據的方法有哪些
統計數據收集方法:直接觀察法、采訪法(又分為面訪式、電話式、自填式)、通訊法、網路調查法、衛星遙感法。
1、直接觀察法
調查人員到現場對調查對象進行觀察、 計量和登記以取得資料的方法。調查人員對所觀察的事件或行為不加以控制或干涉,能夠在被調查者不察覺的情況下獲得資料。
2、采訪法
面訪式:個別深度訪談。
一次只有一名受訪者參加、針對特殊問題的調查。
適合於較隱秘的問題,如個人隱私問題;或較敏感的問題。
面試式
面訪式:座談會
也稱集體訪談,將一組被調查者集中在調查現場, 讓他們對調查的主題發表意見以獲得資料。
參加座談會的人數不宜過多,一般為6~10人。
電話式
調查人員根據調查提綱(調查表),通過電話問答的形式來獲取信息。
時效快、成本低、覆蓋面廣;但每次調查時間不能過長、拒訪率高。
自填式
調查人員把調查表或問卷當面交給被調查者, 填完後當面交回的一種數據收集方法。 回收率高、但耗時費力。
3、通訊法
由調查組織者(例如政府統計部門)把調查表或問卷郵寄或電子傳送給被調查者,填寫後返回,也稱郵寄問卷調查。
調查對象不受空間區域限制、調查成本低;但速度較慢、 回收率較低。
4、網路調查法
通過互聯網、計算機通信和數字互動式媒體,了解和掌握信息的方式。
具有自願性、定向性、及時性、互動性、經濟性與匿名性。
常用方法:網上問卷調查法、在線交流調查法、網路觀察法、網路實驗法等。
5、衛星遙感法
使用衛星高解析度照片,提供地面農作物綠度資料,來估計農產量的方法。
⑶ 數據調查的具體方法是什麼
一 業務調研
數據倉庫是要涵蓋所有業務領域,還是各個業務領域獨自建設,業務領域內的業務線也同樣面臨著這個問題。所以要構建大數據數據倉庫,就需要了解各個業務領域、業務線的業務有什麼共同點和不同點,以及各個業務線可以細分為哪幾個業務模塊,每個業務模塊具體的業務流程又是怎樣的。業務調研是否充分,將會直接決定數據倉庫建設是否成功。
二 需求調研
了解業務系統的業務後不等於說就可以實施數倉建設了,還需要收集數據使用者的需求,及找分析師、運營人員、產品人員等了解他們對數據的訴求。通常需求調研分下面兩種途徑:
1. 根據與分析師、運營人員、產品人員的溝通獲取需求。
2. 對現有報表、數據進行研究分析獲取數據建設需求。
三 數據調研
前期需要做好數據探查工作,需要了解資料庫類型,數據來源,全量數據情況及數據每年增長情況,更新機制;還需要了解數據是否結構化,是否清洗,是介面調用還是直接訪問庫,有哪些類型的數據,數據結構之怎樣的。
數據開發,模型建設之前,先了解數據結構,數據內容,數據特性,對數據有一個整體把控
探查一下本次需求能不能實現,怎麼實現,有沒有隱藏bug,數據質量如何
⑷ 常見的收集數據的方法有哪些
收集數據的方法主要有普查和抽樣調查兩種方式,當對要求數據非常非常准確的時候可以採取普查的方式,抽樣調查是在被調查的數據中隨機地抽取一些數據組成一個樣本,通過對樣本中數據的分析去估計全體數據的情況。常見的方法還有問卷調查、查閱資料、實地考查、試驗等。
常見的收集數據的方法,主要看你做哪方面的數據分析報告了,根據你分析目的選擇數據收集方式,主要有普查和抽樣調查兩種方式,當對要求數據非常非常准確的時候可以採取普查的方式,抽樣調查是在被調查的數據中隨機地抽取一些數據組成一個樣本,通過對樣本中數據的分析去估計全體數據的情況。常見的方法還有問卷調查、查閱資料、實地考查、試驗等。
還有觀察法
觀察法是通過開會、深入現場、參加生產和經營、實地采樣、進行現場觀察並准確記錄(包括測繪、錄音、錄相、拍照、筆錄等)調研情況。主要包括兩個方面:一是對人的行為的觀察,二是對客觀事物的觀察。觀察法應用很廣泛,常和詢問法、搜集實物結合使用,以提高所收集信息的可靠性。
根據觀察的場景,可以將觀察區分為實驗室觀察和實地觀察;根據觀察者的參與程序,可分為參與觀察和非參與觀察;根據觀察的准備程度,可分為結構性觀察和非結構性觀察。不同類型的觀察,適用於不同情境,觀察者也扮演著不同角色。