1. 大數據專業可以從事哪些工作
1、Hadoop開發工程師
Hadoop是一個分布式文件系統(Hadoop Distributed File System),簡稱HDFS。Hadoop是一個能夠對大量數據進行分布式處理的軟體框架, 以一種可靠、高效、可伸縮的方式進行數據處理。所以說Hadoop解決了大數據如何存儲的問題,因而在大數據培訓機構中是必須學習的課程。
2、數據分析師
數據分析師是數據師的一種,指的是不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
作為一名數據分析師、至少需要熟練SPSS、STATISTIC、Eviews、SAS、大數據魔鏡等數據分析軟體中的一門,至少能用Acess等進行資料庫開發,至少掌握一門數學軟體如matalab、mathmatics進行新模型的構建,至少掌握一門編程語言。總之,一個優秀的數據分析師,應該業務、管理、分析、工具、設計都不落下。
3、數據挖掘工程師
做數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,最基本的比如線性代數、高等代數、凸優化、概率論等。
經常會用到的語言包括Python、Java、C或者C++,我自己用Python或者Java比較多。有時用MapRece寫程序,再用Hadoop或者Hyp來處理數據,如果用Python的話會和Spark相結合。
4、大數據可視化工程師
隨著大數據在人們工作及日常生活中的應用,大數據可視化也改變著人類的對信息的閱讀和理解方式。從網路遷徙到谷歌流感趨勢,再到阿里雲推出縣域經濟可視化產品,大數據技術和大數據可視化都是幕後的英雄。
2. 學大數據可以從事什麼職業
1、數據分析師。數據分析師 是數據師的一種,指的是不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
作為一名數據分析師、至少需要熟練SPSS、STATISTIC、Eviews、SAS等數據分析軟體中的一門,至少能用Acess等進行資料庫開發,至少掌握一門數學軟體如matalab、mathmatics進行新模型的構建,至少掌握一門編程語言。總之,一個優秀的數據分析師,應該業務、管理、分析、工具、設計都不落下。
2、 數據架構師。
數據架構師是負責平台的整體數據架構設計,完成從業務模型到數據模型的設計工作 ,根據業務功能、業務模型,進行資料庫建模設計,完成各種面向業務目標的數據分析模型的定義和應用開發,平台數據提取、數據挖掘及數據分析。
從事數據架構師這個職位,需要具備較強的業務理解和業務抽象能力,具備大容量事物及交易類互聯網平台的資料庫模型設計能力,對調度系統,元數據系統有非常深刻的認識和理解,熟悉常用的分析、統計、建模方法,熟悉數據倉庫相關技術,如 ETL、報表開發,熟悉Hadoop,Hive等系統並有過實戰經驗。
6、Hadoop運維工程師
你需要具備的技術知識:平台大數據環境的部署維護和技術支持, 應用故障的處理跟蹤及統計匯總分析,應用安全、數據的日常備份和應急恢復。
7、Hadoop開發工程師
Hadoop是一個分布式文件系統(Hadoop Distributed File System),簡稱HDFS。Hadoop是一個能夠對大量數據進行分布式處理的軟體框架, 以一種可靠、高效、可伸縮的方式進行數據處理。所以說Hadoop解決了大數據如何存儲的問題,因而在大數據培訓機構中是必須學習的課程。
Hadoop開發工程師需要具備的技術:基於hadoop、hive等構建數據分析平台,進行數據平台架構設計、開發分布式計算業務,應用大數據、數據挖掘、分析建模等技術,對海量數據進行挖掘,發現其潛在的關聯規則,對hadoop、hive、hbase、Map/Rece相關產品進行預研、開發,Hadoop相關技術解決海量數據處理問題、大數據量的分析, Hadoop相關業務腳本的性能優化與提升,不斷提高系統運行效率。
8、大數據可視化工程師
隨著大數據在人們工作及日常生活中的應用,大數據可視化也改變著人類的對信息的閱讀和理解方式。從網路遷徙到谷歌流感趨勢,再到阿里雲推出縣域經濟可視化產品,大數據技術和大數據可視化都是幕後的英雄。
3. 大數據畢業後可以從事什麼工作
學大數據從事的職業常常分為大數據系統研發人員、大數據應用開發人員和大數據分析人員,常見的職業有數據分析師、數據架構師、數據挖掘工程師、數據演算法工畝毀程師等等。
以下是學大數據可以從事的職業介紹:
1、數據分析師:從事行業數據搜集、整理、分析方面的工作,依據數據做出行業研究、評估和預測。需要掌握SPSS、STATISTIC、Eviews、SAS等數據分析工具以及數據分析的營銷思維。
2、數據架構師:負責平台的整體數據架構設計,完成從業務模型到數據模型的設計工作,根據業務功能、業務模型,進行資料庫建模設計,完成各種面向業務目標的數據分析模型的定義和應用開發,平台數據提取、數據挖掘及數據分析。
3、數據應用師:用常人能理解的語言表述出數據所蘊含的信息,並根據數據並頌分析結論推動企業內部做出調整。將數據還原到產品中,為產品所用。
4、數據挖掘工程師:從大量的數據中通過演算法搜索隱藏於其中的信息,使企業決策智能化、自動化,提高企業工作效率,減少錯誤決策的可能性。需要具備深厚的統計學基礎,需要熟悉R、SAS、 SPSS等統計分析軟體。
5、數據算迅蔽備法工程師:負責大數據產品數據挖掘演算法與模型部分的設計,制定數據建模、數據處理和數據安全等架構規范並落地實施。需要具備扎實的數據挖掘基礎知識,精通機器學習、數學統計常用演算法,掌握常見分布式計算框架和技術原理,如Hadoop、MapRece、 Yarn、Storm、Spark等;熟悉Linux操作系統和Shell編程,至少熟練掌握一門編程語言。
4. 數據處理專員干什麼的
一、數據處理專員主要工作內容如下:
1、對公司項目的原始資料庫進行清理,並根據反饋意見進行修改;
2、負責各類數據的分類和整理;
3、文字輸入、文件掃描,數據錄入和核對。
4、參與數據處理系統測試;
5、協助部門經理,對數中春扒據處理員的工作進行指導;
6、完成領導交辦的其他工作內容。
二、數據處理專員崗位要求如下:
1、大專及以上學歷,3年以上數據處理工作經驗,從事市場研究行業者優先;
2、熟練使用SPSS、Excel等數據處理工具,具備良好的數據統計、分析及處理能力;
3、具備嚴密的邏輯思維能力,對項目充分理解,數據敏感,善於從數據分析中發現問題;
4、良好的溝通、表達和賣昌協調能力;;
5、做事細心、嚴謹、勤奮、踏實,具備強烈的責任心和團隊意識;
6、積極良好的心森脊態,能承受工作壓力,樂於與團隊成員分享知識與經驗。
5. 學數據計算及應用專業畢業後可以從事什麼工作,有前途嗎
很多同學擔心學了數據計算及應用專業畢業後不知道做什麼工作,其實每個專業都有自己的對口工作,不然教育部也不會開設此專業。如果考生確實喜歡某個專業,建議根據自己的興趣來選擇。不要人雲亦雲隨大流。本文我幫大家整理了數據計算及應用專業畢業後可以從事的工作有哪些,一起來看看吧。
畢業後可以在中小學進行教師崗位,也可在金融或互聯網公司進行相關的數據分析處理崗位,也有很多本科生選擇升學讀研。該專業適合升學考研。
本專業學生的就業前景和就業條件一般。畢業後,可以擔任中小學教師、金融或互聯網公司相關數據分析和處理等職務,很多本科生選擇上高等教育研究生。本專業適合研究生入學考試。
應用數學是基礎專業,是其他相關專業的「母體專業」。是否科研數據分析、軟體開發、三維動畫生產或金融保險、國際經濟貿易、工商管理、化工制葯、通信工程建築設計等等,都離不開相關的數學專業知識,數學與其他相關專業的關系會更緊密,數學專業知識會得到更廣泛的應用。
因為數學與應用數學該專業與其他相關專業有著密切的聯系,有很多類似的專業可供選擇。因此,報考本專業比報考其他專業容易得多,選擇新工作、轉行也容易得多,有利於今後更好地就業。
6. 數據處理主要有哪些工作
數據是對事實、概念或指令的一種表達形式,可由人工或自動化裝置進行處理。數據的形式可以是數字、文字、圖形或聲音等。數據經過解釋並賦予一定的意義之後,便成為信息。數據處理的基本目的是從大量的、可能是雜亂無章的、難以理解的數據中抽取並推導出對於某些特定的人們來說是有價值、有意義的數據。數據處理是系統工程和自動控制的基本環節。數據處理貫穿於社會生產和社會生活的各個領域。數據處理技術的發展及其應用的廣度和深度,極大地影響著人類社會發展的進程。數據處理離不開軟體的支持,數據處理軟體包括:用以書寫處理程序的各種程序設計語言及其編譯程序,管理數據的文件系統和資料庫系統,以及各種數據處理方法的應用軟體包。為了保證數據安全可靠,還有一整套數據安全保密的技術。
根據處理設備的結構方式、工作方式,以及數據的時間空間分布方式的不同,數據處理有不同的方式。不同的處理方式要求不同的硬體和軟體支持。每種處理方式都有自己的特點,應當根據應用問題的實際環境選擇合適的處理方式。數據處理主要有四種分類方式①根據處理設備的結構方式區分,有聯機處理方式和離線處理方式。②根據數據處理時間的分配方式區分,有批處理方式、分時處理方式和實時處理方式。③根據數據處理空間的分布方式區分,有集中式處理方式和分布處理方式。④根據計算機中央處理器的工作方式區分,有單道作業處理方式、多道作業處理方式和互動式處理方式。
數據處理對數據(包括數值的和非數值的)進行分析和加工的技術過程。包括對各種原始數據的分析、整理、計算、編輯等的加工和處理。比數據分析含義廣。隨著計算機的日益普及,在計算機應用領域中,數值計算所佔比重很小,通過計算機數據處理進行信息管理已成為主要的應用。如側繪制圖管理、倉庫管理、財會管理、交通運輸管理,技術情報管理、辦公室自動化等。在地理數據方面既有大量自然環境數據(土地、水、氣候、生物等各類資源數據),也有大量社會經濟數據(人口、交通、工農業等),常要求進行綜合性數據處理。故需建立地理資料庫,系統地整理和存儲地理數據減少冗餘,發展數據處理軟體,充分利用資料庫技術進行數據管理和處理。
有關商務網站的數據處理:由於網站的訪問量非常大,在進行一些專業的數據分析時,往往要有針對性的數據清洗,即把無關的數據、不重要的數據等處理掉。接著對數據進行相關分分類,進行分類劃分之後,就可以根據具體的分析需求選擇模式分析的技術,如路徑分析、興趣關聯規則、聚類等。通過模式分析,找到有用的信息,再通過聯機分析(OLAP)的驗證,結合客戶登記信息,找出有價值的市場信息,或發現潛在的市場。
您可能會感興趣
7. 學大數據可以從事什麼職業
大數據可以從事大數據開發工程師、Hadoop開發工程師、數據挖掘、信息架構工程師、大數據分析師等等。
1、大數據開發工程師
大數據開發工程師:統計;精簡到兩類指標:PV和UV;精簡到一句話就是:統計各種指標的PV和UV。具體的工作並不是這么的簡單,還需要從業者具備hadoop、spark、kafka、python等知識的應用。
2、Hadoop開發工程師
信息時代數據的爆發式增長,使得數據的規模越來越大,傳統BI即商務智能的數據處理成本高漲,加劇了企業的負擔。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。
3、數據挖掘
數塵枝老據被清理並准備好進行檢查,就可以通過數據挖掘開始搜索過程。這就是企業進行實際發現、決策和預測的搭敗過程。數據挖掘在很多方面都是大數據流程的真正核心。
4、信息架構工程師
信息架構師需要懂得定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等,信息架構工程師的工作內容。
5、大數據分析師
大數據分析師需要對海量的大數據做分析、挖掘和展現,並且將其中有價值的信息提派升取出來為決策提供支持,而大數據分析師實際上就是從事這類工作的從業人員。
《大數據人才報告》指出,目前全國的大數據人才僅46萬,未來3-5年內將會出現高達150萬的大數據人才的缺口。
當下中國互聯網行業需求最多的六類人才職位為研發工程師、產品經理、人力資源、市場營銷、運營和數據分析。其中需求量最大的是研發工程師,而最為稀缺的是數據分析人才。領英報告表明,高度稀缺的是數據分析人才,其供給指數最低,僅為0.05。並且其才跳槽速度也最快,平均跳槽速度為19.8個月。
根據中國商業聯合會數據分析專業委員會統計,未來中國基礎性數據分析人才缺口將高達到1400萬,而在BAT企業招聘的職位里,60%以上都在招大數據人才。
8. 數據處理是什麼工作
問題一:數據處理是什麼意思 名詞解釋
數據處理:(data processing),是對數據的採集、存儲、檢索、加工、變換和傳輸。數據是對事實、概念或指令的一種表達形式,可由人工或自動化裝置進行處理。
基本目的
數據處理的基本目的是從大量的、可能是雜亂無章的、難以理解的數據中抽取並推導出對於某些特定的人們來說是有價值、有意義的數據。
數據處理的8個方面
數據處理涉及的加工處理比一般的算術運算要廣泛得多。
計算機數據處理主要包括8個方面。
①數據採集:採集所需的信息。
②數據轉換:把信息轉換成機器能夠接收的形式。
③數據分組:指定編碼,按有關信息進行有效的分組。
④數據組織:整理旁悶數據或用某些方法安排數據,以便進行處理。
⑤數據計算:進行各種算術和邏輯運算,以便得到進一步的信息。
⑥數據存儲:將原始數據或算的結果保存起來,供以後使用。
⑦數據檢索:按用戶的要求找出有用的信息。
⑧數據排序:把數據按一定要求排成次序。
問題二:中文數據處理員的工作內容是什麼 應該和國際化語言轉換有關系,皮啟腔在軟體當中存在著編碼不同的關系,例如需要把日文轉換成中文。光翻譯是可以做到的,但有些時候需要靠編碼來自動轉換。如果你對編碼不太熟悉,請參考ASCII碼和UNICODE編碼的關系和歷史,你就能了解啦。
問題三:數據處理專員干什麼的 偶正龔找工作,看到這個公司招聘客服專員,不知道是干什麼的啊?是天天吵架的隨便給你列幾點吧,希望能有幫助 1、提供良好的客戶服務中心現場。 2、受理
問題四:數據分析師主要做什麼 數據分析師指的是不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。
作用
越來越多的 *** 機關、企事業單位將選擇擁有數據分析師資質的專業人士為他們的項目做出科學、合理的分析、以便正確決策;越來越多的風險投資機構把數據分析師所出具的數據分析報告作為其判斷項目是否可行及是否值得投資的重要依據;越來越多的高等院校和教育機構把數據分析師課程作為其中高管理層及決策層培訓計劃的重要內容;越來越多的有志之士把數據分析師培訓內容作為其職業生涯發展中必備的知識體系。
2工作職責
互聯網本身具有數字化和互動性的特徵,這種屬性特徵給數據搜集、整理、研究帶來了革命性的突破。以往「原子世界」中數據分析師要花較高的成本(資金、資源和時間)獲取支撐研究、分析的數據,數據的豐富性、全面性、連續性和及時性都比互聯網時代差很多。
與傳統的數據分析師相比,互聯網時代的數據分析師面臨的不是數據匱乏,而是數據過剩。因此,互聯網時代的數據分析師必須學會藉助技術手段進行高效的數據處理。更為重要的是,互聯網時代的數據分析師要不斷在數據研究的方法論方面進行創新和突破。
就行業而言,數據分析師的價值與此類似。就新聞出版行業而言,無論在任何時代,媒體運營者能否准確、詳細和及時地了解受眾狀況和變化趨勢,都是媒體成敗的關鍵。
此外,對於新聞出版等內容產業來說,更為關鍵的是,數據分析師可以發揮內容消費者數據分析的職能,燃衫這是支撐新聞出版機構改善客戶服務的關鍵職能。
3要求
技能要求
1、懂業務。從事數據分析工作的前提就會需要懂業務,即熟悉行業知識、公司業務及流程,最好有自己獨到的見解,若脫離行業認知和公司業務背景,分析的結果只會是脫了線的風箏,沒有太大的使用價值。
2、懂管理。一方面是搭建數據分析框架的要求,比如確定分析思路就需要用到營銷、管理等理論知識來指導,如果不熟悉管理理論,就很難搭建數據分析的框架,後續的數據分析也很難進行。另一方面的作用是針對數據分析結論提出有指導意義的分析建議。
3、懂分析。指掌握數據分析基本原理與一些有效的數據分析方法,並能靈活運用到實踐工作中,以便有效的開展數據分析。基本的分析方法有:對比分析法、分組分析法、交叉分析法、結構分析法、漏斗圖分析法、綜合評價分析法、因素分析法、矩陣關聯分析法等。高級的分析方法有:相關分析法、回歸分析法、聚類分析法、判別分析法、主成分分析法、因子分析法、對應分析法、時間序列等。
4、懂工具。指掌握數據分析相關的常用工具。數據分析方法是理論,而數據分析工具就是實現數據分析方法理論的工具,面對越來越龐大的數據,我們不能依靠計算器進行分析,必須依靠強大的數據分析工具幫我們完成數據分析工作。
5、懂設計。懂設計是指運用圖表有效表達數據分析師的分析觀點,使分析結果一目瞭然。圖表的設計是門大學問,如圖形的選擇、版式的設計、顏色的搭配等等,都需要掌握一定的設計原則。[1]
其他要求
良好的溝通交流能力,文字語言表達能力,較好的邏輯分析能力;
具有獨立的產品策劃開發能力,項目管理,商務溝通能力;
強烈責任心,開放的性格,良好的溝通能力; 擅於協作,具備良好的團隊合作精神;
能夠在壓力下開展工作;善於學習。
4考試等級
當前我國數據分析師由中國商業聯合會數據分析專業委員會以及工信部教育考試中心共同考核認證,通過培訓考核,工信部教育考試中心頒發《項目數據分析師職業技術證書》,數據分析行業協會頒發《項目數據分析師證書》,此證書是申請成立項目數據分析事務所的必備條件之一。
5培養
國內正式的數據分析行業的認證只......>>
問題五:數據分析師是一個什麼樣的職業? 隨著各行業計算機應用以及信息化水平提高,各行業企事業單位已裝備了非常完備的計算機系統,搭建了暢通無阻的互聯網平台,信息化「硬體」設施已初具規模,但與此同時,隨著業務發展以及市場信息不斷積累,商業領域和行業部門產生了大量的業務數據,很多企業信息中心或統計部門數據量非常之大已成為名副其實的信息海洋,大量的、雜亂無章的
數據以及錯誤的數據分析方法非但沒有給企業創造競爭力,相反給企業帶來人力、物力、時間巨大浪費和難以擺脫的長期壓力,甚至由於誤用錯誤的數據分析方法或使用不完整的數據,給企業發展帶來負面影響或相反作用。因此,面對用於決策的有效信息隱藏在大量數據中的現實問題,如何採用正確的數據分析統計和數據挖掘方法,從大量的數據中提取對人們有價值、有意義的數據,獲得有利於商業運作、提高競爭力的信息,已成為企業面臨的共同問題。
為推動知識管理,挖掘數據價值,適應商業企業的市場競爭需要,同時更好的配合國家對專業技術人員進行培訓的要求, 信息產業部通信行業職業技能鑒定指導中心根據國家對專業技術人員加強培訓且須持證上崗等文件精神,於2005年9月正式面向全國推出了國家數據分析師認證(NTC-CCDA)培訓項目。
國家數據分析認證(NTC-CCDA)課程包括數據分析思維訓練、數據分析理念和誤區陷阱提示、數據分析方法內容精解、數據分析工具軟體應用(SPSS、Clementine、Decision Time & What If、AMOS4.0-5.0、AnswerTree3.0等)、市場預測分析等方面內容,它是對數據進行調查統計、分析預測、數據挖掘等一系列活動的總和,其基本目的是採用科學的正確的數據統計、分析預測、數據挖掘等方法,從大量的、雜亂無章的數據中提取對人們有價值、有意義的數據,從而提升數據價值,提高企業核心競爭力。
國家數據分析認證(NTC-CCDA)作為2005年最新的國家級認證培訓項目,必將在今後相當長的一段時間內,成為非常熱門的職業之一,專家預測,在今後的五年內,我國將至少需要50萬名持有國家數據分析認證(NTC-CCDA)證書的數據分析專業人才。
目前, *** 經濟部門、金融機構、投資公司以及企業統計和分析人員對國家數據分析師的需求正在與日俱增。項目數據分析行業在歐美發展得十分成熟,數據分析這一幫助企業決策的方式已經深入到各行各業。而在中國,數據分析剛剛走過了7個年頭,巨大的市場潛力和人才缺口使得數據分析行業進入了發展的黃金時期,而數據分析師則成為了一個朝陽職業。數據分析如何切實地幫助企業決策?數據分析師這一新興職業的工作性質是什麼?整個行業的未來發展前景如何?近日筆者帶著這些問題采訪了相關人士。
●數據分析在我國屬於朝陽行業
數據分析在國外廣泛應用於各個領域,但在中國仍屬於朝陽行業,至今剛剛走過了7個年頭。「中國數據分析行業的發展大致可以分成四個階段」, 中國商業聯合會數據分析專業委員會培訓處主任任彥博表示,「第一階段可稱為覺醒與前瞻。90年代,大量海外機構將西方投資決策技術引進中國,並受到中國企業和金融投資機構的廣泛學習借鑒。數據分析行業到了21世紀進入到第二個階段,迎來了數據分析師的誕生。從2004年到2010年,我國項目數據分析師人數從零起步,猛增至近萬人。到了第三階段,我國首家數據分析事務所創立。在第四個階段中,中國商業聯合會數據分析專業委員會正式成立,首屆中國數據分析業峰會在京成功的舉行都標志著中國數據分析行業已經進入快速發展的成長期。」...>>
問題六:數據分析員的工作內容和具體要求是什麼啊 80分 數據分析員的主要工作內容:
1、根據數據分析方案進行數據分析,在既定時間內提交給市場研究人員;
2、能進行較高級的數據統計分析;
3、公司錄入人員的管理和業績考核;以及對編碼人員的行業知識和問卷結構的培訓;
4、錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對;
數據分析員任職要求:
知識/經驗:具有數理統計,經濟學,資料庫原理以及相關知識;能熟練使用EXCLE、SPSS、QUANVERT、SAS等統計軟體。
工作能力: 嚴謹的邏輯思維能力、學習能力、言語表達能力、管理能力
工作態度:積極主動、工作認真、工作嚴謹
互聯網公司招數據分析員比較多,在一些對業績和績效比較注重的公司也會招數據分析員
問題七:數據分析師工作職責是什麼 崗位職責: 1、配合顧問從事客戶需求的系統分析開發工作; 2、配合業務、實施完成售中、售前項目的分析設計工作; 3、根據客戶及實施需求規劃設計產品功能; 任職資格: 1、計算機或相關專業本科或以上學歷; 2、3年以上ERP產業系統分析經驗; 3、熟悉企業管理、財務管理、生產管理行業等管理流程; 4、熟悉Delphi語言,掌握SQL資料庫、XML檔案結構; 5、具有較強的文檔撰寫能力和演講培訓能力(包括需求分析、總體方案、概要設計等軟體文檔); 6、具有良好的職業道德和工作態度,良好的團隊合作和協調能力; 7、具有較強的分析和解決問題的能力,豐富的知識和靈活的應變能力。
問題八:數據分析員屬於什麼專業 沒有屬於什麼專業,一般從事的人都是統計學或者數學專業的。
問題九:互聯網公司的數據分析專員主要是什麼工作內容? 1、根據數據分析方案進行數據分析,在既定時間內提交給市場研究人員;
2、能進行較高級的數據統計分析;
3、公司錄入人員的管理和業績考核;以及對編碼人員的行業知識和問卷結構的培訓;
4、錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對.
問題十:大數據這個行業裡面的全部崗位都有什麼?_?要全部的 ETL研發,Hadoop開發,可視化工具開發,信息架構開發,數據倉庫研究,OLAP開發,數據科學研究,數據預測分析,企業數據管理,數據安全研究
9. 大數據所從事什麼工作
大數據技術專業可以從事的工作有這些:
視數據的機構已經越來越多,上到國防部,下到互聯網創業公司、金融機構需要通過大數據項目來做創新驅動,需要數據分析或處理崗位也很多;常見的食品製造、零售電商、醫療製造、交通檢測等也需要數據分析與處理,如優化庫存,降低成本,預測需求等。人才主要分成三大類:大數據系統研發類、大數據應用開發類、大數據分析類,熱門崗位有:
1.大數據系統架構師
大數據平台搭建、系統設計、基礎設施。技能:計算機體系結構、網路架構、編程範式、文件系統、分布並行處理等。
2.大數據系統分析師
面向實際行業領域,利用大數據技術進行數據安全生命周期管理、分析和應用。技能:人工智慧、機器學習、數理統計、矩陣計算、優化方法。
3.hadoop開發工程師。
解決大數據存儲問題。
4.數據分析師
不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
作為一名數據分析師,至少需要熟練SPSS、STATISTIC、Eviews、SAS、大數據魔鏡等數據分析軟體中的一門,至少能用Acess等進行資料庫開發,至少掌握一門數學軟體如matalab、mathmatics進行新模型的構建,至少掌握一門編程語言。總之,一個優秀的數據分析師,應該業務、管理、分析、工具、設計都不落下。
5.數據挖掘工程師
做數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,最基本的比如線性代數、高等代數、凸優化、概率論等。經常會用到的語言包括Python、Java、C或者C++,有時用MapRece寫程序,再用Hadoop或者Hyp來處理數據,如果用Python的話會和Spark相結合
6.大數據可視化工程師
隨著大數據在人們工作及日常生活中的應用,大數據可視化也改變著人類的對信息的閱讀和理解方式。從網路遷徙到谷歌流感趨勢,再到阿里雲推出縣域經濟可視化產品,大數據技術和大數據可視化都是幕後的英雄
大數據可視化工程師崗位職責:1、 依據產品業務功能,設計符合需求的可視化方案。2、 依據可視化場景不同及性能要求,選擇合適的可視化技術。3、 依據方案和技術選型製作可視化樣例。4、 配合視覺設計人員完善可視化樣例。5、 配合前端開發人員將樣例組件化。
想了解更多大數據從事工作的問題, 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。