導航:首頁 > 數據處理 > 一個億數據量怎麼處理

一個億數據量怎麼處理

發布時間:2023-06-12 00:33:39

㈠ 1億條數據如何分表100張到Mysql資料庫中(PHP)

下面通過創建100張表來演示下1億條數據的分表過程,具體請看下文代碼。
當數據量猛增的時候,大家都會選擇庫表散列等等方式去優化數據讀寫速度。筆者做了一個簡單的嘗試,1億條數據,分100張表。具體實現過程如下:
首先創建100張表:
$i=0;
while($i<=99){
echo
"$newNumber
\r\n";
$sql="CREATE
TABLE
`code_".$i."`
(
`full_code`
char(10)
NOT
NULL,
`create_time`
int(10)
unsigned
NOT
NULL,
PRIMARY
KEY
(`full_code`),
)
ENGINE=MyISAM
DEFAULT
CHARSET=utf8";
mysql_query($sql);
$i++;
下面說一下我的分表規則,full_code作為主鍵,我們對full_code做hash
函數如下:
$table_name=get_hash_table('code',$full_code);
function
get_hash_table($table,$code,$s=100){
$hash
=
sprintf("%u",
crc32($code));
echo
$hash;
$hash1
=
intval(fmod($hash,
$s));
return
$table."_".$hash1;
}
這樣插入數據前通過get_hash_table獲取數據存放的表名。
最後我們使用merge存儲引擎來實現一張完整的code表
CREATE
TABLE
IF
NOT
EXISTS
`code`
(
`full_code`
char(10)
NOT
NULL,
`create_time`
int(10)
unsigned
NOT
NULL,
INDEX(full_code)
)
TYPE=MERGE
UNION=(code_0,code_1,code_2.......)
INSERT_METHOD=LAST
;
這樣我們通過select
*
from
code就可以得到所有的full_code數據了。
以上介紹就是本文的全部內容,希望對大家有所幫助。

㈡ oracle面試題:在一個上億條數據的表中,批量插入大量數據,並根據內容重新定義索引,怎麼做最有效率

1、首先明確一點,如果每條數據需要一秒的時間,假如是一億條數據至少需要2年左右,意味著你兩年都不能使用這個資料庫,在現實生活中,你認為可能這樣做嗎?

2、解決這類問題的最好辦法就是:時間換空間,例如:最早的新浪微薄的用戶登陸日誌就這樣實現的,他的登陸日誌並不是在用戶每次登陸後進行更新的,而當用戶量少的時間段進行數據的更新操作,或則每次用戶登陸的時候多執行一條更新的語句,不過這樣做,缺少實時性。

3、正所謂:「魚和熊掌二者不可得兼」,我認為並沒有空間和時間可以得到完全平衡的方法,只是看你更在意空間還是時間問題。

㈢ 表中有1億條數據,怎麼查詢最快

我有幾個解決問題的思路,一般我都是這么用的,1億條不算很多

-------------------------華麗麗的分割線---------------------------------

  1. 如果是Oracle資料庫的話,首先我們可以將表改成分區表,配合建立分區索引,效率是非常的快的,如果將普通表改成分區表,用Oracle的在線重定義包dbms_redefinition就可以實現

  2. 同樣,如果這個表一般不插入數據的話,只供查詢的話,我們還可以將表壓縮,改成收縮表

    壓縮後插入效率很低,不過查詢效率很高

  3. 如果是其他的資料庫的話,如sybase的話,只能定義一些索引了,並且索引要放在不同的segment裡面,防止查詢的時候I/O爭用的情況出現,降低查詢效果

    總的來說,1億條數據不多,還是比較好處理的,我這邊的表多大幾十億都照樣查詢

    還有要提醒的是,一個表的數據,我們不能讓它一直增加,要對表做一下數據遷移的策略,比如定時將表的數據遷到其他的歷史表裡面去。如果本身就是歷史表的話就當我沒說哦,呵呵

㈣ mysql 如何處理億級數據

1、數據表 collect ( id, title ,info ,vtype) 就這4個欄位,其中 title 用定長,info 用text, id 是逐漸,vtype是tinyint,vtype是索引。這是一個基本的新聞系統的簡單模型。現在往裡面填充數據,填充10萬篇新聞。

㈤ 從一個數據量有1億的表中刪除3000萬條記錄,怎樣比較快

建前咐一個新表,把不需要刪除的數據select出來放臘悔陵進去
然後把原表刪除,然後重命名,重建索引
用delete的話半天都跑不完輪戚的

㈥ 如何處理海量數據

在實際的工作環境下,許多人會遇到海量數據這個復雜而艱巨的問題,它的主要難點有以下幾個方面:
一、數據量過大,數據中什麼情況都可能存在。
如果說有10條數據,那麼大不了每條去逐一檢查,人為處理,如果有上百條數據,也可以考慮,如果數據上到千萬級別,甚至 過億,那不是手工能解決的了,必須通過工具或者程序進行處理,尤其海量的數據中,什麼情況都可能存在,例如,數據中某處格式出了問題,尤其在程序處理時, 前面還能正常處理,突然到了某個地方問題出現了,程序終止了。
二、軟硬體要求高,系統資源佔用率高。
對海量的數據進行處理,除了好的方法,最重要的就是合理使用工具,合理分配系統資源。一般情況,如果處理的數據過TB級,小型機是要考慮的,普通的機子如果有好的方法可以考慮,不過也必須加大CPU和內存,就象面對著千軍萬馬,光有勇氣沒有一兵一卒是很難取勝的。
三、要求很高的處理方法和技巧。
這也是本文的寫作目的所在,好的處理方法是一位工程師長期工作經驗的積累,也是個人的經驗的總結。沒有通用的處理方法,但有通用的原理和規則。
下面我們來詳細介紹一下處理海量數據的經驗和技巧:
一、選用優秀的資料庫工具
現在的資料庫工具廠家比較多,對海量數據的處理對所使用的資料庫工具要求比較高,一般使用Oracle或者DB2,微軟 公司最近發布的SQL Server 2005性能也不錯。另外在BI領域:資料庫,數據倉庫,多維資料庫,數據挖掘等相關工具也要進行選擇,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。筆者在實際數據分析項目中,對每天6000萬條的日誌數據進行處理,使用SQL Server 2000需要花費6小時,而使用SQL Server 2005則只需要花費3小時。
二、編寫優良的程序代碼
處理數據離不開優秀的程序代碼,尤其在進行復雜數據處理時,必須使用程序。好的程序代碼對數據的處理至關重要,這不僅僅是數據處理准確度的問題,更是數據處理效率的問題。良好的程序代碼應該包含好的演算法,包含好的處理流程,包含好的效率,包含好的異常處理機制等。
三、對海量數據進行分區操作
對海量數據進行分區操作十分必要,例如針對按年份存取的數據,我們可以按年進行分區,不同的資料庫有不同的分區方式,不 過處理機制大體相同。例如SQL Server的資料庫分區是將不同的數據存於不同的文件組下,而不同的文件組存於不同的磁碟分區下,這樣將數據分散開,減小磁碟I/O,減小了系統負荷, 而且還可以將日誌,索引等放於不同的分區下。
四、建立廣泛的索引
對海量的數據處理,對大表建立索引是必行的,建立索引要考慮到具體情況,例如針對大表的分組、排序等欄位,都要建立相應 索引,一般還可以建立復合索引,對經常插入的表則建立索引時要小心,筆者在處理數據時,曾經在一個ETL流程中,當插入表時,首先刪除索引,然後插入完 畢,建立索引,並實施聚合操作,聚合完成後,再次插入前還是刪除索引,所以索引要用到好的時機,索引的填充因子和聚集、非聚集索引都要考慮。
五、建立緩存機制
當數據量增加時,一般的處理工具都要考慮到緩存問題。緩存大小設置的好差也關繫到數據處理的成敗,例如,筆者在處理2億條數據聚合操作時,緩存設置為100000條/Buffer,這對於這個級別的數據量是可行的。
六、加大虛擬內存
如果系統資源有限,內存提示不足,則可以靠增加虛擬內存來解決。筆者在實際項目中曾經遇到針對18億條的數據進行處理, 內存為1GB,1個P42.4G的CPU,對這么大的數據量進行聚合操作是有問題的,提示內存不足,那麼採用了加大虛擬內存的方法來解決,在6塊磁碟分區 上分別建立了6個4096M的磁碟分區,用於虛擬內存,這樣虛擬的內存則增加為 4096*6 + 1024 =25600 M,解決了數據處理中的內存不足問題。
七、分批處理
海量數據處理難因為數據量大,那麼解決海量數據處理難的問題其中一個技巧是減少數據量。可以對海量數據分批處理,然後處 理後的數據再進行合並操作,這樣逐個擊破,有利於小數據量的處理,不至於面對大數據量帶來的問題,不過這種方法也要因時因勢進行,如果不允許拆分數據,還 需要另想辦法。不過一般的數據按天、按月、按年等存儲的,都可以採用先分後合的方法,對數據進行分開處理。
八、使用臨時表和中間表
數據量增加時,處理中要考慮提前匯總。這樣做的目的是化整為零,大表變小表,分塊處理完成後,再利用一定的規則進行合 並,處理過程中的臨時表的使用和中間結果的保存都非常重要,如果對於超海量的數據,大表處理不了,只能拆分為多個小表。如果處理過程中需要多步匯總操作, 可按匯總步驟一步步來,不要一條語句完成,一口氣吃掉一個胖子。
九、優化查詢SQL語句
在對海量數據進行查詢處理過程中,查詢的SQL語句的性能對查詢效率的影響是非常大的,編寫高效優良的SQL腳本和存儲 過程是資料庫工作人員的職責,也是檢驗資料庫工作人員水平的一個標准,在對SQL語句的編寫過程中,例如減少關聯,少用或不用游標,設計好高效的資料庫表 結構等都十分必要。筆者在工作中試著對1億行的數據使用游標,運行3個小時沒有出結果,這是一定要改用程序處理了。
十、使用文本格式進行處理
對一般的數據處理可以使用資料庫,如果對復雜的數據處理,必須藉助程序,那麼在程序操作資料庫和程序操作文本之間選擇, 是一定要選擇程序操作文本的,原因為:程序操作文本速度快;對文本進行處理不容易出錯;文本的存儲不受限制等。例如一般的海量的網路日誌都是文本格式或者 csv格式(文本格式),對它進行處理牽扯到數據清洗,是要利用程序進行處理的,而不建議導入資料庫再做清洗。
十一、定製強大的清洗規則和出錯處理機制
海量數據中存在著不一致性,極有可能出現某處的瑕疵。例如,同樣的數據中的時間欄位,有的可能為非標準的時間,出現的原因可能為應用程序的錯誤,系統的錯誤等,這是在進行數據處理時,必須制定強大的數據清洗規則和出錯處理機制。
十二、建立視圖或者物化視圖
視圖中的數據來源於基表,對海量數據的處理,可以將數據按一定的規則分散到各個基表中,查詢或處理過程中可以基於視圖進行,這樣分散了磁碟I/O,正如10根繩子吊著一根柱子和一根吊著一根柱子的區別。
十三、避免使用32位機子(極端情況)
目前的計算機很多都是32位的,那麼編寫的程序對內存的需要便受限制,而很多的海量數據處理是必須大量消耗內存的,這便要求更好性能的機子,其中對位數的限制也十分重要。
十四、考慮操作系統問題
海量數據處理過程中,除了對資料庫,處理程序等要求比較高以外,對操作系統的要求也放到了重要的位置,一般是必須使用伺服器的,而且對系統的安全性和穩定性等要求也比較高。尤其對操作系統自身的緩存機制,臨時空間的處理等問題都需要綜合考慮。
十五、使用數據倉庫和多維資料庫存儲
數據量加大是一定要考慮OLAP的,傳統的報表可能5、6個小時出來結果,而基於Cube的查詢可能只需要幾分鍾,因此處理海量數據的利器是OLAP多維分析,即建立數據倉庫,建立多維數據集,基於多維數據集進行報表展現和數據挖掘等。
十六、使用采樣數據,進行數據挖掘
基於海量數據的數據挖掘正在逐步興起,面對著超海量的數據,一般的挖掘軟體或演算法往往採用數據抽樣的方式進行處理,這樣 的誤差不會很高,大大提高了處理效率和處理的成功率。一般采樣時要注意數據的完整性和,防止過大的偏差。筆者曾經對1億2千萬行的表數據進行采樣,抽取出 400萬行,經測試軟體測試處理的誤差為千分之五,客戶可以接受。
還有一些方法,需要在不同的情況和場合下運用,例如使用代理鍵等操作,這樣的好處是加快了聚合時間,因為對數值型的聚合比對字元型的聚合快得多。類似的情況需要針對不同的需求進行處理。
海量數據是發展趨勢,對數據分析和挖掘也越來越重要,從海量數據中提取有用信息重要而緊迫,這便要求處理要准確,精度要高,而且處理時間要短,得到有價值信息要快,所以,對海量數據的研究很有前途,也很值得進行廣泛深入的研究。

閱讀全文

與一個億數據量怎麼處理相關的資料

熱點內容
縣城沒有順豐快遞代理怎麼樣 瀏覽:177
空分技術學院有什麼專業 瀏覽:981
北京旅遊機票代理怎麼聯系 瀏覽:409
舊貨市場上哪裡有舊空調賣 瀏覽:490
執行監理監督程序是什麼 瀏覽:227
天津銀行股票如何交易 瀏覽:467
模型怎麼招代理拿貨 瀏覽:334
雷賽伺服怎麼保存數據 瀏覽:902
草坪剪紙技術有哪些 瀏覽:474
創新城股票做事交易如何掛檔 瀏覽:764
qq怎麼屏蔽人發信息 瀏覽:333
臨滄蘭瑞莎代理多少錢一盒 瀏覽:501
安卓如何重置電池數據 瀏覽:820
北橋廢塑料市場在什麼位置 瀏覽:402
菜市場海帶為什麼那麼綠 瀏覽:476
水光針滾針用什麼產品 瀏覽:72
在哪裡學種菜技術 瀏覽:509
閑魚交易如何催發貨 瀏覽:717
哪些崗位有權登記公民個人信息 瀏覽:14
如何更改小程序登錄密碼 瀏覽:449