導航:首頁 > 數據處理 > 國家數據存儲的投入多少

國家數據存儲的投入多少

發布時間:2023-06-10 22:41:35

大數據三大核心技術:拿數據、算數據、賣數據!

大數據的由來

對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

1

麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大數據的應用領域

大數據無處不在,大數據應用於各個行業,包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂 等在內的 社會 各行各業都已經融入了大數據的印跡。

製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

汽車 行業,利用大數據和物聯網技術的無人駕駛 汽車 ,在不遠的未來將走入我們的日常生活。

互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。

電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

能源行業,隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。

物流行業,利用大數據優化物流網路,提高物流效率,降低物流成本。

城市管理,可以利用大數據實現智能交通、環保監測、城市規劃和智能安防。

體育 娛樂 ,大數據可以幫助我們訓練球隊,決定投拍哪種 題財的 影視作品,以及預測比賽結果。

安全領域,政府可以利用大數據技術構建起強大的國家安全保障體系,企業可以利用大數據抵禦網路攻擊,警察可以藉助大數據來預防犯罪。

個人生活, 大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為習慣,為其提供更加周到的個性化服務。

大數據的價值,遠遠不止於此,大數據對各行各業的滲透,大大推動了 社會 生產和生活,未來必將產生重大而深遠的影響。

大數據方面核心技術有哪些?

大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。首先給出一個通用化的大數據處理框架,主要分為下面幾個方面:數據採集與預處理、數據存儲、數據清洗、數據查詢分析和數據可視化。

數據採集與預處理

對於各種來源的數據,包括移動互聯網數據、社交網路的數據等,這些結構化和非結構化的海量數據是零散的,也就是所謂的數據孤島,此時的這些數據並沒有什麼意義,數據採集就是將這些數據寫入數據倉庫中,把零散的數據整合在一起,對這些數據綜合起來進行分析。數據採集包括文件日誌的採集、資料庫日誌的採集、關系型資料庫的接入和應用程序的接入等。在數據量比較小的時候,可以寫個定時的腳本將日誌寫入存儲系統,但隨著數據量的增長,這些方法無法提供數據安全保障,並且運維困難,需要更強壯的解決方案。

Flume NG

Flume NG作為實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據,同時,對數據進行簡單處理,並寫到各種數據接收方(比如文本,HDFS,Hbase等)。Flume NG採用的是三層架構:Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數據源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數據,讀取成功之後會刪除channel中的信息。

NDC

Logstash

Logstash是開源的伺服器端數據處理管道,能夠同時從多個來源採集數據、轉換數據,然後將數據發送到您最喜歡的 「存儲庫」 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數據來源捕捉事件,能夠以連續的流式傳輸方式,輕松地從您的日誌、指標、Web 應用、數據存儲以及各種 AWS 服務採集數據。

Sqoop

Sqoop,用來將關系型資料庫和Hadoop中的數據進行相互轉移的工具,可以將一個關系型資料庫(例如Mysql、Oracle)中的數據導入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數據導入到關系型資料庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapRece 作業(極其容錯的分布式並行計算)來執行任務。Sqoop 的另一大優勢是其傳輸大量結構化或半結構化數據的過程是完全自動化的。

流式計算

流式計算是行業研究的一個熱點,流式計算對多個高吞吐量的數據源進行實時的清洗、聚合和分析,可以對存在於社交網站、新聞等的數據信息流進行快速的處理並反饋,目前大數據流分析工具有很多,比如開源的strom,spark streaming等。

Strom集群結構是有一個主節點(nimbus)和多個工作節點(supervisor)組成的主從結構,主節點通過配置靜態指定或者在運行時動態選舉,nimbus與supervisor都是Storm提供的後台守護進程,之間的通信是結合Zookeeper的狀態變更通知和監控通知來處理。nimbus進程的主要職責是管理、協調和監控集群上運行的topology(包括topology的發布、任務指派、事件處理時重新指派任務等)。supervisor進程等待nimbus分配任務後生成並監控worker(jvm進程)執行任務。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。

Zookeeper

Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。它的作用主要有配置管理、名字服務、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那麼對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數據的可靠和一致性,同時它可以通過名字來獲取資源或者服務的地址等信息,可以監控集群中機器的變化,實現了類似於心跳機制的功能。

數據存儲

Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。

HBase

HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。HBase是一種Key/Value系統,部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用伺服器,來增加計算和存儲能力。

Phoenix

Phoenix,相當於一個Java中間件,幫助開發工程師能夠像使用JDBC訪問關系型資料庫一樣訪問NoSQL資料庫HBase。

Yarn

Yarn是一種Hadoop資源管理器,可為上層應用提供統一的資源管理和調度,它的引入為集群在利用率、資源統一管理和數據共享等方面帶來了巨大好處。Yarn由下面的幾大組件構成:一個全局的資源管理器ResourceManager、ResourceManager的每個節點代理NodeManager、表示每個應用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。

Mesos

Mesos是一款開源的集群管理軟體,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應用架構。

Redis

Redis是一種速度非常快的非關系資料庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內存的鍵值對數據持久化到硬碟中,使用復制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。

Atlas

Atlas是一個位於應用程序與MySQL之間的中間件。在後端DB看來,Atlas相當於連接它的客戶端,在前端應用看來,Atlas相當於一個DB。Atlas作為服務端與應用程序通訊,它實現了MySQL的客戶端和服務端協議,同時作為客戶端與MySQL通訊。它對應用程序屏蔽了DB的細節,同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動後會創建多個線程,其中一個為主線程,其餘為工作線程。主線程負責監聽所有的客戶端連接請求,工作線程只監聽主線程的命令請求。

Ku

Ku是圍繞Hadoop生態圈建立的存儲引擎,Ku擁有和Hadoop生態圈共同的設計理念,它運行在普通的伺服器上、可分布式規模化部署、並且滿足工業界的高可用要求。其設計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數據分析能力。Ku不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數據分析的要求。Ku的應用場景很廣泛,比如可以進行實時的數據分析,用於數據可能會存在變化的時序數據應用等。

在數據存儲過程中,涉及到的數據表都是成千上百列,包含各種復雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數據進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁碟上的存儲。

數據清洗

MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算,」Map(映射)」和」Rece(歸約)」,是它的主要思想。它極大的方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統中。

隨著業務數據量的增多,需要進行訓練和清洗的數據會變得越來越復雜,這個時候就需要任務調度系統,比如oozie或者azkaban,對關鍵任務進行調度和監控。

Oozie

Oozie是用於Hadoop平台的一種工作流調度引擎,提供了RESTful API介面來接受用戶的提交請求(提交工作流作業),當提交了workflow後,由工作流引擎負責workflow的執行以及狀態的轉換。用戶在HDFS上部署好作業(MR作業),然後向Oozie提交Workflow,Oozie以非同步方式將作業(MR作業)提交給Hadoop。這也是為什麼當調用Oozie 的RESTful介面提交作業之後能立即返回一個JobId的原因,用戶程序不必等待作業執行完成(因為有些大作業可能會執行很久(幾個小時甚至幾天))。Oozie在後台以非同步方式,再將workflow對應的Action提交給hadoop執行。

Azkaban

Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務之間的依賴關系問題。azkaban主要是由三部分構成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數的狀態信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調度以及對工作流執行過程中的監控等;Azkaban Executor Server用來調度工作流和任務,記錄工作流或者任務的日誌。

流計算任務的處理平台Sloth,是網易首個自研流計算平台,旨在解決公司內各產品日益增長的流計算需求。作為一個計算服務平台,其特點是易用、實時、可靠,為用戶節省技術方面(開發、運維)的投入,幫助用戶專注於解決產品本身的流計算需求

數據查詢分析

Hive

Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數據,它完全依賴於HDFS和MapRece。可以將Hive理解為一個客戶端工具,將SQL操作轉換為相應的MapRece jobs,然後在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapRece程序的過程,它的出現可以讓那些精通SQL技能、但是不熟悉MapRece 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規模數據集上很方便地利用SQL 語言查詢、匯總、分析數據。

Hive是為大數據批量處理而生的,Hive的出現解決了傳統的關系型資料庫(MySql、Oracle)在大數據處理上的瓶頸 。Hive 將執行計劃分成map->shuffle->rece->map->shuffle->rece…的模型。如果一個Query會被編譯成多輪MapRece,則會有更多的寫中間結果。由於MapRece執行框架本身的特點,過多的中間過程會增加整個Query的執行時間。在Hive的運行過程中,用戶只需要創建表,導入數據,編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。

Impala

Impala是對Hive的一個補充,可以實現高效的SQL查詢。使用Impala來實現SQL on Hadoop,用來進行大數據實時查詢分析。通過熟悉的傳統關系型資料庫的SQL風格來操作大數據,同時數據也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapRece批處理,而是通過使用與商用並行關系資料庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統計函數查詢數據,從而大大降低了延遲。Impala將整個查詢分成一執行計劃樹,而不是一連串的MapRece任務,相比Hive沒了MapRece啟動時間。

Hive 適合於長時間的批處理查詢分析,而Impala適合於實時互動式SQL查詢,Impala給數據人員提供了快速實驗,驗證想法的大數據分析工具,可以先使用Hive進行數據轉換處理,之後使用Impala在Hive處理好後的數據集上進行快速的數據分析。總的來說:Impala把執行計劃表現為一棵完整的執行計劃樹,可以更自然地分發執行計劃到各個Impalad執行查詢,而不用像Hive那樣把它組合成管道型的map->rece模式,以此保證Impala有更好的並發性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。

Spark

Spark擁有Hadoop MapRece所具有的特點,它將Job中間輸出結果保存在內存中,從而不需要讀取HDFS。Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。Spark 是在 Scala 語言中實現的,它將 Scala 用作其應用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數據集。

Nutch

Nutch 是一個開源Java 實現的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。

Solr

Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業級搜索應用的全文搜索伺服器。它對外提供類似於Web-service的API介面,用戶可以通過http請求,向搜索引擎伺服器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,並得到XML格式的返回結果。

Elasticsearch

Elasticsearch是一個開源的全文搜索引擎,基於Lucene的搜索伺服器,可以快速的儲存、搜索和分析海量的數據。設計用於雲計算中,能夠達到實時搜索,穩定,可靠,快速,安裝使用方便。

還涉及到一些機器學習語言,比如,Mahout主要目標是創建一些可伸縮的機器學習演算法,供開發人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數據流圖進行數值計算的開源軟體庫TensorFlow等,常用的機器學習演算法比如,貝葉斯、邏輯回歸、決策樹、神經網路、協同過濾等。

數據可視化

對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。主流的BI平台比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內的SmallBI和新興的網易有數等。

在上面的每一個階段,保障數據的安全是不可忽視的問題。

基於網路身份認證的協議Kerberos,用來在非安全網路中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網路環境下通信,向另一個實體以一種安全的方式證明自己的身份。

控制許可權的ranger是一個Hadoop集群許可權框架,提供操作、監控、管理復雜的數據許可權,它提供一個集中的管理機制,管理基於yarn的Hadoop生態圈的所有數據許可權。可以對Hadoop生態的組件如Hive,Hbase進行細粒度的數據訪問控制。通過操作Ranger控制台,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、資料庫、表、欄位許可權。這些策略可以為不同的用戶和組來設置,同時許可權可與hadoop無縫對接。

簡單說有三大核心技術:拿數據,算數據,賣數據。

㈡ 我國大數據發展的現狀是怎樣的

隨著信息技術和人類生產生活交匯融合,全球數據呈現爆發增長、海量集聚的特點。無論是國家、企業還是社會公眾,都越來越認識到數據的價值。因此,近年來,各地紛紛成立大數據發展局,企業紛紛推動數據資產治理,大數據輻射的行業也從傳統的電信、金融逐漸擴展到工業、醫療、教育等。一時間,彷彿各行各業都在談大數據,人人都在談大數據。但也有聲音說大數據迎來了「七年之癢」,面對大數據熱潮也需要一些「冷思考」。我國大數據究竟發展得如何?未來我國大數據發展還有哪些機遇和挑戰?

1、大數據產業進展顯著
過去幾年,大數據理念已經深入人心,「用數據說話」已經成為所有人的共識,數據也成了堪比石油、黃金、鑽石的戰略資源。五年來,我國大數據產業政策日漸完善,技術、應用和產業都取得了非常明顯的進展。
在政策方面,我國從中央到地方的大數據政策體系已經基本完善,目前已經進入落地實施階段。自從2014年「大數據」這個詞寫入政府工作報告以來,我國大數據發展的政策環境掀開了全新的篇章。在頂層設計上,國務院《促進大數據發展行動綱要》對政務數據共享開放、產業發展和安全三方面做了總體部署。《政務信息資源共享管理暫行辦法》《大數據產業發展規劃(2016-2020)》等文件也都已經出台。十九大報告中提出「推動大數據與實體經濟深度融合」,「十三五」規劃中提出「實施國家大數據戰略」。衛健、農業、環保、檢察、稅務等部門還出台了領域大數據發展的具體政策。截至2019年初,所有省級行政區都發布了大數據相關的發展規劃,十幾個省市設立了大數據管理局,8個國家大數據綜合試驗區、11個國家工程實驗室啟動建設。可以說,大數據的政策體系已經基本搭建完成,目前已經紛紛進入落地實施甚至評估檢查階段。
在技術方面,我國大數據技術發展屬於「全球第一梯隊」,但國產核心技術能力嚴重不足。我國獨有的大體量應用場景和多類型實踐模式,促進了大數據領域技術創新速度和能力水平,處於國際領先地位。在技術全面性上,我國平台類、管理類、應用類技術均具有大面積落地案例和研究;在應用規模方面,我國已經完成大數據領域的最大集群公開能力測試,達到了萬台節點;在效率能力方面,我國大數據產品在國際大數據技術能力競爭平台上也取得了前幾名的好成績;在知識產權方面,2018年我國大數據領域專利公開量約佔全球的40%,位居世界第二。但我國大數據技術大部分為基於國外開源產品的二次改造,核心技術能力亟待加強。例如,目前國內主流大數據平台技術中,自研比例不超過10%。
在產業方面,我國大數據產業多年來保持平穩快速增長,但面臨提質增效的關鍵轉型。2018年,我國大數據產業延續多年來的增速,繼續保持相對高速的增長。根據中國信息通信研究院的測算,2018年我國大數據產業整體規模有望達到5400億元,同比增長15%。然而,綜合國內外環境、新興技術發展等多種因素,大數據產業的增速出現了下滑。我國的大數據產業也面臨著從高速發展向高質量發展的關鍵轉型期。
在應用方面,大數據的行業應用更加廣泛,正加速滲透到經濟社會的方方面面。隨著大數據工具的門檻降低以及企業數據意識的不斷提升,越來越多的行業開始嘗到大數據帶來的「甜頭」。無論是從新增企業數量、融資規模還是應用熱度來說,與大數據結合緊密的行業正在從傳統的電信業、金融業擴展到政務、健康醫療、工業、交通物流、能源行業、教育文化等,行業應用「脫虛向實」趨勢明顯,與實體經濟的融合更加深入。
2、產業的五大困局
雖然我國大數據總體發展形勢良好,也面臨難得的發展機遇,但仍然存在一些困難和問題。
一是,涉及核心技術的產業發展薄弱,未能有效提升我國核心技術競爭力。核心技術的影響力在大數據產業有著極高的重要性。由於大數據企業在完成產品開發後,可以近乎零成本無限制的復制,因此擁有核心技術的大企業,很容易將技術優勢轉化為市場優勢,即憑借具體的信息產品贏得海量用戶獲得壟斷地位。當前,從大數據技術與產品的供給側看,我國雖然在局部技術實現了單點突破,但大數據領域系統性、平台級核心技術創新仍不多見。大數據處理工具都是「他山之石」,大部分企業用的都是國外的數據採集、數據處理、數據分析、數據可視化技術,自主核心技術突破還有待時日。尤其是開源產品的技術標准方面,我國的影響力尚亟待提升。
二是,數據孤島和壁壘降低了大數據產業資源配置效率。大數據產業發展必須實現數據信息的自由流動和共享,如果數據不開放、不共享,數據整合就不能實現,數據價值也會大大降低。無論是政府數據、互聯網數據還是其他數據,數據擁有者往往不願對其進行開放流通。受制於前期信息基礎設施建設,目前我國政府數據往往還存在著諸多「數據孤島」和「數據煙囪」,數據價值難以發揮。
三是,數據安全管理薄弱增加了大數據產業的發展風險。大數據技術為經濟社會發展帶來創新活力的同時,也使數據安全、個人信息保護乃至大數據平台安全等面臨新威脅與新風險。海量多源數據在大數據平台匯聚,來自多個用戶的數據可能存儲在同一個數據池中,並分別被不同用戶使用,極易引發數據泄露風險。利用大數據技術對海量數據(21.90 -5.19%,診股)進行挖掘分析所得結果可能包含涉及國家經濟社會等各方面的敏感信息,需要對分析結果的共享和披露加強安全管理。
四是,產業壟斷與惡性競爭現象頻發,「劣幣驅逐良幣」現象明顯。由於資源型產業門檻低、利潤高,新興的大數據企業往往首先將目光盯在獲取數據資源上面。大量依託數據資源優勢的企業誕生,為大數據產業帶來了低附加值的壟斷經濟模式,使得依靠技術壁壘打江山的企業不得不面對殘酷的市場競爭,放緩了技術研發的步伐。同時,數據壟斷問題也愈發明顯。少數互聯網巨頭企業擁有巨大數據,不但對產業發展不利,甚至存在巨大的數據聚集隱患。
五是,各地發展同質化嚴重,普遍存在重存儲輕應用的現象。由於缺乏統一的大數據產業分類統計體系和產業運行監測手段,各地大數據產業的定位相似,同質化競爭加劇。而盲目的重復建設,更是可能導致大數據產業過剩。同時,由於部分地區信息化發展程度有限,大數據應用場景不夠豐富,更是以數據中心等大數據存儲設施的建設作為發展大數據產業的關鍵,且規模巨大,目標動輒以百萬台計,後期若無法有效利用,將造成巨大的資源浪費。

㈢ 東數西算-IDC行業專家交流會

1、各個相關產業鏈都有上市公司:


纜通: 依米康(精密空調)、英維克、佳力圖


供電設備: 中恆電氣(高壓直流)、科華數據(大容量UPS)、科士達(UPS)、易事特


ICT設備: 華為、浪潮、長飛、亨通


光模塊企業: (中際旭創、新易盛、華工 科技 、博創 科技 、)


IDC工程企業: 力陽 科技 、城地香江、科華數據、數據港,他們本身也投資IDC,工程+數據中心運營


IDC獨立供應商: 萬國數據、世紀互聯、光環新網、數據港、寶信軟體。

東數西算政策對行業是一個提振,國內公司都會積極參與到東數西算工程裡面去。



2、西部地區存量機櫃上架情況?客戶構成?網路延時情況?


西部地區現在30%上架率,國家部委要提升到2025年50%。西部目前上架率不容樂觀,未來兩年增長。


主要客戶構成:目前是冷數據存儲為主和部分溫數據,未來規劃溫冷數據、熱數據客戶導入。


冷數據:存儲類數據使用頻率不高,溫數據:調取評率介於冷熱之間。


西部互聯網接入和設備這幾年得到極大改善,東數西算政府部門會對西部IDC的I部分(互聯網接入和傳輸)加大投入。



3、對一線城市核心卡位IDC議價能力影響?


比較前瞻難判斷。我覺得對一線城市肯定有一些影響。一線城市數據中心議價能力售價情況比較樂觀,可能保持穩定,穩中有升趨勢:位置稀缺資源,成本壓力轉化(用電成本和運營管理費用有提升,傳導到下游)。


溢價能力:東數西算是疏導北上廣深一線城市IDC企業去十個集群區域做投資,比拼的是全網路的覆蓋,包括一線城市和西部,原先資源很重要。未來在北上廣深有布局同時相應國家政策布局西部的會有相當強議價能力。



4、互聯網單G測算?


IDC=I+DC:

I:互聯網+連接,運營商做投資;

DC:共享出租,地產屬性。

I是IT+CT業態。


西部改變互聯網連接和互聯互通,做了很多網路直連,例如烏蘭察布和北京。東數西算確確實實需要做網路直連、光纖直連、利用 搞笑 的路由器、交換機、光模塊來改善互聯互通。


光纖投入可能是百億計,加上配套ICT設備可能未來五年大幾百億建設投入。


雲廠商、互聯網廠商西部布局:像美利雲寧夏中衛6、7年前就籌備,AWS亞馬遜、三大運營商、人民網人民數據在西部有超大數據中心建設項目。蘋果iCloud落在貴陽、烏蘭察布。共有雲廠家都有基地型布局。



5、西部地區建設成本優勢?


數據中心經過10多年發展建設成本計算都非常精準,每機電成本千瓦2W左右,西部和東部不會有很大區別。


土建成本不同地區區別有差異,占總成本比例不到30%。運營成本:電費、人員管理運營成本。


西部豐富電力資源,火煤、光伏風電,發電成本比較低,電價較東部有優勢,國家政策是西部瓦特變比特,電力變數據存儲計算傳輸,效率高很多,不用幾千公里傳到東部,節省電費成本。


烏蘭察布發電成本2毛多,東部6.5毛。租金較東部便宜不少,西部單機櫃比東部便宜,比如上海6000,內蒙3000-3500。



投資者提問:


1、北京上海上架率?今年趨勢?


平均70%左右。北京會提升,上海會有壓力,上海有能耗指標釋放。今年北京上架率70-75,上海65左右。


2、西部上架率不高痛點?


西部有成本優勢,30%是被平均數據,運營商上架率高,電信呼和浩特雲基地60%。


第三方投資數據中心在西部在招商運營很多問題,西部沒有完善的產業鏈,當地沒有互聯網企業產業鏈基礎。


財政稅收補貼吧東部往西部傳。基礎設施改善、網路延時可靠性可靠性,達到東部水準。


國家會把東部把供給減少,不批數據中心項目,讓數據往西部走。未來西部會承接更多東部業務。


西部運營成本與東部價差:

西部是東部50-60%水平,東部6000。


西部基礎設施條件有改善空間、配套產業鏈有提升空間。交通、酒店,人才培養運維。


建設1-2年,運維需要本地專業團隊。很多西部只能L1/L2運維(物業),L3/L4(IT/CT、系統伺服器)做不到。



3、政府最先從哪幾個方向切入?

結合背景、碳達峰碳中和,西部有大量能源。數據中心高耗能。


國家隊運營商、央國企重點投資,東部數據中心門關上了,往西部做投資。涉及產業鏈瞞大的。國家工程最先獲益的央國企。


碳中和可以集合起來,數據中心大量消化,未來數據中心60-70%用清潔能源。


3、西部機櫃不缺,缺的是傳輸嗎?


是的。受益相關網路伺服器、路由器、交換機、光貓、光纖;中信、長飛、亨通、天孚、ICT。專屬網路(點對點)光纖直連。


4、東數西算會不會對數據中心業務有很大增量?


原本預計IDC每年20%-30%增長,數據存儲計算是制約數字化的因素,東數西算實現了成本端的降低,帶來了大的增量。有便宜的算力,存儲的能力帶來數據爆發。

閱讀全文

與國家數據存儲的投入多少相關的資料

熱點內容
北京旅遊機票代理怎麼聯系 瀏覽:409
舊貨市場上哪裡有舊空調賣 瀏覽:490
執行監理監督程序是什麼 瀏覽:227
天津銀行股票如何交易 瀏覽:467
模型怎麼招代理拿貨 瀏覽:334
雷賽伺服怎麼保存數據 瀏覽:902
草坪剪紙技術有哪些 瀏覽:474
創新城股票做事交易如何掛檔 瀏覽:764
qq怎麼屏蔽人發信息 瀏覽:333
臨滄蘭瑞莎代理多少錢一盒 瀏覽:501
安卓如何重置電池數據 瀏覽:820
北橋廢塑料市場在什麼位置 瀏覽:402
菜市場海帶為什麼那麼綠 瀏覽:476
水光針滾針用什麼產品 瀏覽:72
在哪裡學種菜技術 瀏覽:509
閑魚交易如何催發貨 瀏覽:717
哪些崗位有權登記公民個人信息 瀏覽:14
如何更改小程序登錄密碼 瀏覽:449
怎麼搶到貝貝網秒殺產品 瀏覽:136
沈陽房票交易注意哪些 瀏覽:784