Ⅰ 做數據分析員前景如何
可以先來看幾個數據,據獵聘數據顯示,數據分析師的平均薪資在20k+,應屆生的平均月薪都在10k+。目前數據分析能力已成為各行業必備的通用能力。研究顯示,有數據分析能力的人工資比一般人多30%,而沒有數據分析能力的人失業率是一般人的2倍。
數據分析師不僅在薪資上有巨大優勢,這個職位在未來將會持續有巨大的缺口。據麥肯錫咨詢權威預測2025年中國將需數據人才高達220萬。
初級數據分析師如果選擇技術方向發展,可選擇的職位也有很多,例如演算法工程師、大數據開發、數據科學家等等。對這些崗位的職責,可以參考下列的解釋。
1、演算法工程師
運用數理統計知識、編程和業務思維建立數學模型,是當之無愧的產品靈魂。
2、數據開發工程師
數據工程師屬於技術崗,負責搭建資料庫、處理數據、維護數據安全等工作,主要是服務於數據的使用者,比如上文中的數據分析師、數據產品經理以及數據建模師。
3、數據科學家
數據科學家屬於綜合性人才,集數據分析能力(>數據分析師)、統計學基礎、業務能力(>數據產品)、演算法(>演算法工程師)與溝通能力於一身。這類人才屬於數據分析行業中的頂配,各方面的能力都超一流,不過這類人才相當稀有,在行業中基本是可遇而不可求。
最後說完了數據分析師的職業發展方向,再回歸到最重要的行業本質吧。選擇一個行業或職位最本質的因素就是賽道。這個道理很簡單,人需要在一個天花板不斷上升的行業,個人職業的發展的天花板才能跟著往上走。我們都知道只有在路很寬,人不擠的賽道上才能夠跑得快,也只有在一個資本都湧入的市場上才掙到更多錢。
綜上所述,數據分析師的就業前景是非常好的,如果你想要成為一名優秀的數據分析師,要先找到自己的方向,確立一個職業目標,再逐步掌握數據分析師的必備技能,在軟體的基礎操作上不斷提升自己的應用。
Ⅱ 數據分析師以後前景怎麼樣
從行業背景上看,大數據作為現在最熱門的行業之一,最常見的職位可以大概的分兩個類型:
1、數據開發方向
偏技術,包括開發工程師、挖掘工程師、演算法工程師、數倉工程師,這些相對門檻有點高,對學歷、專業、畢業學校要求都是比較高的。
2、分析方向
偏業務,是通過數據發現業務問題,洞察行業機會點,通過數據產生的價值驅動企業的發展,這也是現在企業數字化轉型最需要的人才,對編程能力要求較低。
有一部分人在沒有建立分析思維,沒有一定的項目經驗的時候,可能只能做數據運營的工作,大表哥大表姐居多,數據運營和數據分析師的區別還是挺大的,根據企業的業務來看,一般來說數據運營主要是完成數據處理的工作,比如測算ROI,報表,數據整理,數據查詢和一些統計類的工作等,而數據分析師的工作不僅需要掌握一些工具的基礎操作,還需要懂業務,能夠把商業知識和數據結合起來,能通過企業的各項數據發現企業經營過程中的業務問題,幫企業解決問題。
那麼現在企業都在進行數字化轉型,企業的發展都是靠著數據來推動的,數據分析決策企業戰略。企業數字化轉型最需要的就是懂數據的人,而國內最缺的就是具備分析能力的人才,所以市場上數據分析師的需求和薪資待遇高居不下。
如果做一個對比的話,最火的高薪職業非程序員莫屬了吧,但是看就業前景的話,首先底層程序員工資低,競爭大,競爭從學校的時候就已經開始了,然後到了一定的年齡就危機了,這也是公認的。但是數據分析師卻不一樣,年齡越大項目經驗越豐富,也就側面佐證分析的結果越靠譜,所以做數據分析師不管是從行業發展前景,還是從薪資,都是很有前景的職業。
Ⅲ 數據分析員是什麼職業,未來前景如何
數據分析師職位具有鮮明的時代特點和巨大的需求,在大學本科階段統計專業積極探索培養大學生的數據分析能力,進而為社會提供合格的數據分析師人才的有效對策,具有重要的研究價值和實踐意義。
一、數據分析師培養的意義
(一)數據分析師的培養符合國家戰略
為適應世界經濟一體化的進程,徹底改變我國「項目數據分析」專業技術人才緊缺的現狀,2005 年 4 月,全國第一家數據分析事務所在陝西成立,到目前,我國相繼已有北京、陝西、江蘇、新疆、甘肅、山東、浙江、上海、黑龍江等 14 個省、市、自治區約 80 家項目數據分析專業機構進入中國市場經濟舞台,涉及項目已從最初的分析評估業和金融業,擴展至會計師、投融資機構、政府審批和企業管理等眾多領域。隨著大數據時代的來臨,構建大數據研究平台、整合創新資源、實施「專項計劃」等成為各個省市的工作重點之一。
(二)數據分析師的就業前景光明
在被視為「數據元年」的今天,數據分析師以待遇優厚和地位尊崇而聞名國際,曾被Times時代雜志譽為「21世紀最熱門五大新興行業」。今天,國內數據分析行業專業人才每年以千位數非速增長著,同期各行業領域空缺崗位已達近二十萬,未來中國對數據分析師的需求更是呈井噴之勢。
在數據分析人才培養上,國外已經將數據分析師人才作為國家戰略。據統計,目前世界 500 強企業中,有90% 以上建立了數據分析部門。大數據時代對數據分析師的巨大需求也大大刺激了高等院校的培養熱情。
二、數據分析師職業素養的培養
通過對各大招聘網站數據分析師、市場調查分析師等職位招聘信息的搜集整理和深入分析,挖掘並歸納出社會用人單位對數據分析師職位的知識技能和道德素質等方面的具體要求如下:
(一)數據分析師的職業內涵
數據分析師是指在不同行業中,專門從事數據搜集、整理、分析,並依據數據做出行業或市場研究、評估和預測的專業人員;是以實際數據為依據,對項目現狀及遠期進行統計、分析、預測並轉化為決策信息的專業人才。數據分析師可以通過掌握的大量行業數據,運用科學的計算工具,將經濟學原理與數學模型結合,進行科學合理的定量分析,數據分析師可以預測企業未來的收益及風險,為企業經營決策提供科學量化分析的依據。
目前數據分析師的認證主要有 2個:一是注冊數據分析師(CDA),由CDA注冊數據分析師協會Certified Data Analyst Institute)在順應大數據、雲計算的潮流下發起成立的職業簡稱;二是項目數據分析師(CPDA),由中國商業聯合會數據分析專業委員會以及工信部教育考試中心共同考核認證,證書是申請成立項目數據分析事務所的必備條件之一。
(二)數據分析師的知識要求
掌握多元統計分析、應用回歸分析、時間序列分析、計量經濟學、經濟預測研究等統計建模方法,了解本行業統計方法的新進展;掌握 SQL/oracle 等資料庫的數據整理、查詢、提取等方法;熟練使用相關的統計軟體,准確解讀軟體的運行結果;了解相關行業的業務知識和數據構成。
(三)數據分析師的能力要求
對信息、數據敏感,具備較強的文字功底,能獨立撰寫研究報告;能熟練使用 SPSS/SAS/Eviews 等統計分析軟體,具備數據分析或數據挖掘的綜合能力;掌握資料庫體系結構及數據架構,具備 Excel/SQL 或 Access 的查詢語句運用技能與知識,有良好的數據處理、建立統計模型能力。
(四)數據分析師的崗位職責
承擔行業、企業有關信息、數據的調查、搜集、整理、分析研究和發布工作;參與專項研究、課題和調研咨詢項目,撰寫行業分析文章和研究報告;對大數據進行深入挖掘,建立相關模型進行預測、分析,找出相關的聯系,揭示內在規律,為行業、企業決策提供依據。
三、數據分析師的培養方案
培養方案是高等教育辦學思想和辦學理念的集中體現,為突出數據分析的培養特色,統計專業應在深入分析數據分析職業需求的前提下,最終制定出符合數據分析師培養要求的課程體系。
(一)培養目標
為學生畢業後能夠成為各行業中數據分析領域的專門人才,確定了統計專業學生在本科教育階段的培養目標:一是具備良好的經濟學、管理學和財務管理等基本素養;二是了解相關行業知識、公司業務流程;三是掌握統計學的基本理論與方法,具備熟練使用 SPSS/SAS 等統計分析軟體進行數據分析或數據挖掘的綜合能力;四是掌握資料庫體系結構及數據架構,具備 Excel/SQL 或Access 的查詢語句運用技能與知識,有良好的數據處理、建立統計模型能力;五是具備較強的文字功底,能獨立撰寫數據分析研究報告。
(二)課程體系設立原則
在本科教育階段,培養數據分析師的課程設置應貫徹「三結合」的原則。
1. 多門學科相結合。數據分析工作是多個學科、多門專業在企業決策中的綜合應用,要成為優秀的數據分析師,必須做到多門學科的融會貫通。需熟悉或了解數學、統計學、經濟學、金融學、管理學、營銷學等學科的相關知識。
2. 理論研究與實踐應用相結合。高等學校一般都建有比較成熟的教學實踐基地和實習基地,學生在理論學習後,可以到企事業單位或財政、金融、保險等行業進行針對性的實習實踐,了解相關行業的業務知識和數據構成,運用所學知識進行數據分析,獨立或合作完成數據分析研究報告。
3. 專業教育與技術資格教育相結合。通過學習,學生可獲得統計學專業理學學士學位或者經濟學學士學位;通過參與社會上的技術資格考試,可獲得數據分析、統計師、調查分析師等專業技術資格證書。兩者的結合,更有利於學生從封閉校園走向開放社會,增加技能的同時,更好地融入社會、適應社會。
(三)課程體系的基本框架
在整個教學過程中,可以將每個學期分為長、短兩個小學期,短學期內設置一些與就業崗位相關的、以技能培養為目標的短期集中實踐教學環節,主要是崗位實訓課程。長學期課程分為4個系列:基礎課程、方向課程、綜合實踐課程、職業拓展課程。通過整合相關知識,優化課程結構,強化實踐技能,突出崗位技能實訓等手段構建課程體系,以達到培養學生具有數據分析師的基本技能和素養的目的。
四、數據分析師培養過程中的策略
(一)教學內容整合策略
在課程體系和課程設置的總體構建下,按照課程模塊化的思路,重新梳理課程教學內容、教學進度和深度,剔除陳舊、重復的內容,加強理論聯系實際內容,增添培養綜合運用能力內容,實現教學內容的整合優化。例如,《應用回歸分析》與《計量經濟學》的內容多有重復,可以將《應用回歸分析》並入《計量經濟學》;又如,《描述統計學》《數理統計》《計量經濟學》和《統計預測與決策》等課程有部分重復內容,必須在對知識的審慎梳理基礎上,整合相應的教學內容,重新制定教學文件。
(二)實驗環節設置策略
找准專業知識方法與實際問題的結合點,並分析研究當前的熱點和難點問題,充實和豐富實踐教學內容,編寫具有應用背景、切實達到鍛煉效果的實驗指導書和指導材料,以明確實驗的具體環節、目的與要求。每個實驗項目應包含實驗性質、實驗目的、實驗要求、實驗內容、實驗步驟和結果分析等部分。所有課程的實驗內容由淺入深,循序漸進,實現實踐教學規范化。
(三)軟體教學安排策略
為使學生充分掌握相關的統計軟體,熟練使用恰當的軟體從事數據的整理、分析,將統計軟體的教學分為三個層次:一是單獨開設 SPSS、SQL Server 資料庫課程;二是課堂內開設Lingo、Eviews、SAS 等軟體實驗;三是短學期和綜合訓練開設 Latex、R 等軟體課程,實現軟體教學層次化。
(四)實踐課程操作策略
為了強化學生的實踐能力和就業競爭力,在短學期實踐開設職場禮儀與溝通實、PPT 製作、統計模型、實訓統計調查方法與實務、辦公自動化實訓等項目;各學期綜合訓練分別開設統計流程與分析寫作、會計實踐軟體、統計分析案例等項目,實現綜合實踐職業化。
(五)拓展課程設計策略
聘任有豐富實踐經驗的統計師、調查分析師和企業家為兼職教授或校外導師,強化校外實踐;結合第二課堂,開展與專業教學相結合的、豐富多樣的課外活動;同時利用大學生統計建模大賽、大學生市場調查分析大賽、大學生數學建模競賽等學科競賽鍛煉學生綜合能力,實現職業拓展多樣化。
五、數據分析師培養的保障措施
(一)整合各種教育資源,提高教學效率
沒有經費的保證,數據分析師的培養只能紙上談兵。所以,學校、二級學院應設立加大資金投入,從軟硬體兩方面大力支持,保證經費落到實處。利用學校現有資源 , 籌建開放實驗室與實習基地,創造培養數據分析師的良好環境。
數據分析師培養必須實行產學結合,堅持開門辦學,與企業聯合培養的方式。創立高校與行業企業聯合培養人才的新機制,改變目前高校人才培養和行業企業需求脫節的現象。通過聯合辦學、共建等方式利用社會資源設立實習、實驗基地。
(二)建立導師制,強化教師的指導作用
為提高學生數據分析的水平,進入大二後 , 二級學院應推行本科「導師制」;到了大三 , 已經具備了一定的科研能力的本科生可以在導師的指導下參加各種與數據分析有關的專業競賽和創新實踐活動,親身體驗數據分析活動的整個過程 , 提高數據分析的基本技能與創新意識;在導師的全程參與和指導下,完成大四階段的校內綜合實訓、校外畢業實習和畢業論文的撰寫工作,使實踐鍛煉全程得到有效監控,保證教學質量。
(三)充分利用各級社團組織,
開展第二課堂的活動第二課堂是課堂教學的延伸和補充。在各級社團組織的規劃和部署下,加大人力、物力的投入,將第二課堂與第一課堂進行系統性、綜合性考慮與設計,實施規范化管理與組織運作,制訂好一系列的活動方案,為培養數據分析師通過更多的鍛煉途徑和方式。
(四)改革評價機制,激發學生的學習興趣
評價是引導師生的指揮棒,大多數學生和教師總會在現行的評價體系引導下來尋求「佳績」。要培養出未來的數據分析師,必須增強學生的學習主動性,提高學生的實踐能力。通過各種活動、各種途徑加強對學生能力的培養,必須要靠科學的評價體系來衡量。為此,建立「N+2」過程考核評價體系 , 對學生能力培養、訓練的全過程進行跟蹤調查,通過測試、信息反饋的結果來反映教育、培訓的效果和評價學生創造力的變化。
總之,項目數據分析(師)事務所在國內正迅速增長,並為政府、金融機構、企業的決策提供著日益重要的參考信息,具有良好的成長和發展空間。如何在信息海洋中找到有效的信息,如何通過有效的數據來科學決策變得尤為重要,因此數據分析師的前景必定輝煌。
Ⅳ 數據分析這個崗位的前景如何
數據分析這個崗位的前景肯定是好的,但是對於個人來說,想要在這個行業就業,還是更看重是否具備這種能力。
之所以會怎麼說,是因為現在是一個大數據的時代,很多的商業活動都會涉及到數據分析這個領域,可以說它是創業或者開展某項商業活動的基礎,只有通過分析數據,才能更好的開展商業項目。正是如此,對於數據分析員崗位專業性要求還是很高,所以對於個人來說,如果想要在數據分析領域有所發展,提升自己的能力更加重要。
一、重點培養數據分析員。
為了適應大數據的經濟體系,改變我國目前項目數據分析專業技術人才缺席的現狀,在很早我國就已經開始針對這一問題進行重點培養數據分析人才。在多省連續開展培養這方面人才的計劃,05年第一家數據分析事務所在陝西成立,隨後有14個省市相繼引進了大概共有80家項目數據分析專業機構,而且涉及的行業也越來越廣泛。
Ⅳ 風險普查員是干什麼的
風險普查員是評估風險的。以全國自然災害綜合風險普查為例。
通過開展普查,摸清全國自然災害風險隱患底數,查明重點地區抗災能力,客觀認識全國和各地區自然災害綜合風險水平,為中央和地方各級人民政府有效開展自然災害防治工作、切實保障經濟社會可持續發展提供權威的災害風險信息和科學決策依據。
開展全國自然災害綜合風險普查,是摸清我國災害風險隱患底數的重要手段,也是提升全社會災害風險意識的重要途徑。
近年來,中國多地發生自然災害,造成部分人員傷亡和財產損失,在引發廣泛社會關注的同時,也引起了國家的重視。事實上,中國已經成為世界上自然災害最嚴重的國家之一。
針對這一事實和我國自然災害所具有種類多、范圍廣、頻率高等特點,我國開展了自然災害綜合風險的普查,這是一項全國性的綜合工作。
在調查過程中,遙感、地理信息系統、大數據、雲計算等新技術將得到充分應用。如運用高解析度遙感影像,輔助各類調查和評估。
利用地理信息系統的空間展示和管理功能,開展各類空間信息統一管理、分析評估和制圖;搭建雲計算環境,構建風險普查大數據管理與處理系統,實現全國調查和評估工作的實時在線處理。