導航:首頁 > 數據處理 > 大數據時代什麼樣的人才是贏家

大數據時代什麼樣的人才是贏家

發布時間:2023-05-30 23:13:23

A. 大數據時代,誰才是最大的贏家

將來擁有大量數據的公司是最大受益者

B. 大數據時代的商業法則

大數據時代的商業法則

大數據時代給企業帶來了前所未有的商機,在大數據時代,企業必須學會利用大數據精確地分析、導入用戶、促成交易,並用最有效率的方式組織生產。在大數據時代,企業必須遵循新的商業法則,否則就會被大數據的浪潮所淹沒。

法則1:解讀用戶的真實需求 解讀用戶的真實需求,就是通過數據的收集、分析挖掘出用戶內心的慾望,提高企業產品推送的成功率,並將其轉化為企業的訂單。


大數據看似神秘莫測,其實在解讀用戶需求上的操作思路卻極其簡單,即盡可能掌握用戶的個人信息和關注信息。當關注信息指向個人時,就能夠相對精準地定義出用戶的需求。


在這一過程中,主要的操作模式有兩種:靜態輻射模式和動態跟蹤模式。


靜態輻射模式


靜態輻射模式的數據分析在一個時間節點上進行,盡量擴大分析對象,並用標簽來篩選出最可能成交的用戶。這是大數據應用中最典型的一種模式。由於一些大企業主動會進行用戶標簽的管理,需要大數據助力營銷的企業就可以「借船出海」。


標簽與購買的關系有兩種:一類標簽與購買的關系非常明顯。例如,一個常常瀏覽經管類書籍的用戶一定是這類書籍的潛在購買者。


另一類標簽與購買的關系卻並不十分明顯。這就需要企業提前進行分析,有時還需要藉助第三方專業機構的分析結果。


例如,新浪微博會根據用戶平時的瀏覽和表達為用戶貼上「標簽」。但是,這些標簽與有些購買行為之間的關系就並不明顯。金夫人是國內婚紗攝影巨頭,他們首先利用自己作為網路大客戶的身份,無償獲取了網路提供的婚紗攝影客戶調研分析數據,發現美食、影院等標簽的用戶最有可能購買婚紗攝影產品。利用這一跨資料庫的結果,金夫人在新浪微博的平台上鎖定了「年齡20~35左右的某地區女性」群體,加上了美食、影院等標簽,精準鎖定了高轉化可能的用戶,並購買了平台提供的「粉絲通」服務,對他們進行定向廣告推送。一般來說,推送5~6萬個用戶大約會得到70~80個電話咨詢,這種轉化過來的電話咨詢顧客被稱「顧客資源」,從顧客資源到最後的成單,轉化率優異,大約在40%。


動態跟蹤模式


動態跟蹤模式的數據分析在一個時間周期內進行,盡量縮小分析對象,不斷通過用戶的行為來為用戶貼上標簽,伺機發現產品推送的時點。由於這種分析針對小群體,無法由第三方機構提供統一的規模化服務,所以,對於企業來說是有高門檻的,需要企業練好內功。這種模式中,企業對於用戶不斷產生的新數據,要進行隨時跟蹤,並隨時在雲端進行處理。


例如,Target超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確地推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對地在每個懷孕顧客的不同階段寄送相應的產品優惠券。在一個個例中,他們居然比用戶更早知道了她懷孕的信息。


又如,亞馬遜基於自己對用戶的了解來進行精準營銷,在網站上的推薦和電子郵件對於產品的推送成為了促進成交的利器。調研公司Forrester分析師蘇察瑞塔·穆爾普魯稱,根據其他電子商務網站的業績,在某些情況下,亞馬遜網站推薦的銷售轉化率可高達60%。這一轉化率遠遠高於其他電子商務網站,難怪一些觀察員將亞馬遜的推薦系統視為「殺手級應用」。最新的消息顯示,亞馬遜已經注冊了「未下單、先發貨」的技術專利,這是更加精準的需求預判和更加直接的產品推送,他們對於大數據的應用已經是爐火純青!


法則2:形成社會化協作的生產安排


如果能依靠大數據進行產品推送實現購買,海量需求就會從互聯網洶涌而來。這意味著產品的數據增多、涉及原料增多、消費者零散下單……這一變化使得工業時代標准化的產品生產模式受到前所未有的顛覆,生產端需要基於大數據形成前所未有的柔性,來對接消費端的柔性。


互聯網商業環境對價值鏈提出了新的挑戰:鏈條上的采購、生產、物流、分銷、零售各環節中,除了生產之外的其他環節也需要強大的數據處理能力,各個環節的數據處理系統和數據本身必須是共享的,而且,這些系統和內容還必須向全社會開放。要達到這種要求,顯然應該應用價值鏈接網,並用大數據來進行生產協調。


大數據的確給價值鏈重塑帶來了機會。在工業經濟時代,生產更多地通過「規模經濟」來獲利,大規模標准化的生產最大程度地降低了單位成本。但在互聯網經濟時代,生產更應該通過「范圍經濟、協同效應和重塑學習曲線」來獲利,因為,多種類、小規模的生產需要價值鏈上的靈動協作。


基於互聯網這樣一個平台,所有的價值鏈環節可以實現數據共享和集中處理。另外,因為使用統一的數據構架,所以不會出現數據孤島,浪費有價值的數據。由此,價值鏈各個環節之間可以無縫鏈接,實現最敏捷、最合理的生產。基於互聯網這樣一個平台,企業入圍合作即可以獲得充分的信息,也不再會遭遇太高的學習門檻。更厲害的是,用戶參與生產也變得容易,模塊化的選擇題,讓業余者也可以發出專業的需求信號。由此,從始端原料的生產者到終端的消費者,全部都被植入了價值鏈(或稱為價值網),社會化協作得以真正實現。而在大數據出現以前,這幾乎是不可能的!


順應法則贏未來


獨具特色的大數據商業法則,將會引發未來商業格局的變化。未來的贏家,將屬於能夠適應新的商業法則和新的商業邏輯的代表者。


在用大數據掘金的世界,誰掌握大數據,並能利用大數據實現上述兩大商業法則的變革,誰就能贏得未來。


因此,我們可以肯定地判斷出,掌握了大數據的資源整合類企業,將會成為大數據時代的企業贏家。這類企業是商業生態(價值網)中的「舵手」,通過靈敏地識別市場需求,指揮網路成員協同生產,獲得組合創新優勢。由於控制了整個網路,此類企業擁有網路收益的剩餘索取權,往往獲利最為豐厚。工業經濟時代,企業是依賴品牌、聲譽和社會資本實現資源整合。互聯網時代,資源變得無限豐富,協作變得極度頻繁,企業更需要依靠大數據來發現需求、整合資源。可以這樣說,掌握了大數據,這類企業就知道「用戶要什麼,哪裡有什麼,如何用資源去滿足用戶需求」。


未來的資源整合企業將基於大數據來運作。維克托·邁爾·舍恩伯格等人在《大數據時代》中,將基於大數據的資源整合企業分為三種:第一種是掌握數據的企業,這類企業掌握了埠,掌握了數據的所有權;第二種是掌握演算法的企業,負責處理數據,挖掘有價值的商業信息,這些企業被稱為「數據武士」;第三種是掌握思維的企業,他們往往先人一步發現市場的機會,他們既不掌握數據技能,也不掌握專業技能,但正因為如此才有廣闊的思維,能夠最大程度串聯資源,形成商業模式,他們相當於「路徑尋找者(pathfinder)」。


按照各自生產要素的價值性和稀缺性,很難說哪類企業真正將在大數據的商業模式中獲益,三類企業各自有各自的貢獻,各自有各自的稀缺之處。


ITASoftware是美國四大機票預訂系統,是一個典型的掌握數據的企業,其將數據提供給Farecast這家提供預測機票價格的企業,後者是一個典型的掌握演算法和思維的企業,直接接觸用戶。結果,ITA Software僅僅從這種合作中分得了一小塊收益。


Overture是搜索引擎付費點擊模式的鼻祖,如果把谷歌看作是媒體,那麼Overture則是相當於廣告代理公司,通過演算法細分不同的瀏覽用戶,向廣告投放企業提供目標用戶的付費點擊(選出他們最需要的用戶)。Overture是典型掌握演算法和思維的企業,雅虎、谷歌則是掌握數據的企業。事實上,谷歌的兩大金礦AdWords和AdSense技術,都是借鑒了Overture的演算法。但是,Overture不能直接接觸到用戶,沒有數據,喪失了話語權,只能獲得少量收益,以至於最後被雅虎收購。


基於大數據的資源整合類企業,它們的生態鏈又將遵循兩個法則。


法則一:接觸用戶的企業總是能夠獲得最多的收益,這和價值鏈上的分配原則是高度一致的。終端價格和原料供應之間的差價全部是由售賣終端產品的企業獲取的。


法則二:掌握數據的企業具有這個商業生態內最大的議價能力,最終最有可能成為贏家。演算法可以攻克,也可以購買,事實上,擠入這個行業的企業並不在少數。而思維則存在一種肯尼斯·阿羅所說的「信息悖論」,即信息在被他人知曉前都價值極高,但卻無法被證實。一旦公開證實它,又因所有人都知道而失去了價值。所以,不管思維和演算法企業走得多快,只要數據企業隨時可以封鎖數據源,就依然把握著「殺手鐧」。甚至,有的數據企業在看不清楚商業模式時,將數據釋放讓思維和演算法企業進行試錯,而一旦試錯成功,則收回數據所有權,模仿其商業模式。


BAT的數據帝國


因此,我們可以說,在大數據時代,資源整合企業的競爭,將會決定未來商業世界的版圖。


在很多人還沒有弄清楚大數據時代的商業法則時,國內互聯網三巨頭BAT(網路、阿里、騰訊)已經在迅速地構建自己的「數據帝國」。


在互聯網的大世界中,用戶有諸多的入口,可以通過不同的APP上傳數據。BAT的原則是,有關吃穿用住行的一切服務商,只要能夠增加他們的數據種類和質量,他們通通拿下。這里,體現出一種典型的「數據累積的邊際收益遞增效應」,即每多增加一個單位的數據,可挖掘的價值就有一個加速的增長,每增加一個種類的數據,可挖掘的價值就有一個加速的增長。某些時候,BAT甚至根本不考慮數據在現階段能否變現為收益,僅僅是納入麾下,等待未來的開發。


現實的情況是,經過了幾輪的收購之後,BAT基本上覆蓋了吃、穿、用、住、行、社交等各個領域的數據入口,加之其原來的龐大數據入口,在數據規模上的優勢已經無與倫比。短時間內,任何企業想要超越他們,幾乎都是不可能的。


BAT不僅是在做掌握數據的企業,也是在做掌握演算法和思維的企業。一方面,擁有龐大的商業用戶群和擁有用戶群消費偏好的大數據,只要具有相應的內容,就可以形成成交、獲取收益。另一方面,他們甚至可以開放應用程序介面(APIs)把自己掌握的數據授權給別人使用,這樣數據就能夠重復產生價值。這方面,阿里巴巴的百川計劃就是一個典型。簡單來說,他們向其他廠商的APP免費開放數據,但他們不收費,僅僅需要他們回饋數據作為代價。這個計劃實施以後,所有的APP都會是他們的入口。


可以說,BAT的帝國是基於數據建立的。甚至有人預言,數據作為「表外資產」一定會在某個時候被會計准則納入。因為,相對於無形資產,這種資產的價值更大。


值得一提的是,傳統工業經濟思維的人根本看不懂大數據時代的商業邏輯。某學者曾對阿里巴巴的收購(零售、文化、金融等)提出過質疑,他列舉蘋果和谷歌收購的案例,認為他們都是在進行專業領域的收購,這是有利於增強競爭力的,但阿里進行的都是多元化收購,是不利於增強競爭力的。


實際上,這是沒有看懂阿里巴巴商業模式的表現。互聯網時代的大多數商業模式,早就脫離了行業的限制,而在某種程度上走向了「大一統」,即「導入流量+大數據分析變現流量」。這種模式里數據就是通用的邏輯,難怪在大數據出現時,維克托·邁爾·舍恩伯格等人就斷言,行業專家和技術專家的光芒會被數據專家掩蓋住,因為後者不受舊觀念的影響,能夠聆聽數據發出的聲音。


盡管BAT強悍如斯,但在他們的夾縫中,仍然有一些商機,企業也可以搭建入口、解讀需求、安排生產。如果說大數據改造商業的神奇已經毋庸置疑,那為何眾多企業依然拿不起放在眼前的這把金鑰匙?很大程度上是因為這些企業缺乏數據基因。


大數據和互聯網經濟的來襲,使得企業只能「被動接網」。面對海量的潛在需求,不僅無法解讀,也無法調動生產進行對接。這就出現了大量企業被互聯網的海量需求「反噬」,並導致供應鏈失控的案例。


在大數據時代,企業規模、資金、生產技術不再重要,品牌也不再擁有神力。獲取數據、分析處理數據、挖掘數據價值的能力成為企業的立身之本。目前我國大部分企業還沒有意識到我們已經進入大數據時代,就像我們大多數消費者沒有意識到我們的消費行為隨時在被計算一樣。在這樣的一個時代,只有建立在數據之上的企業、按照大數據時代的商業法則運營的企業才能更好地生存。

以上是小編為大家分享的關於大數據時代的商業法則的相關內容,更多信息可以關注環球青藤分享更多干貨

C. 什麼樣的人才算是人生贏家

以下幾種人可以算是人身贏家:
1、無依無靠,卻能白手起家的人。有人幫你一陣子,沒有人幫你一輩子,內心的強大促成現實的成就。
2、敢愛敢恨,夫妻共白頭的人。「少年夫妻老來伴」,那些打打鬧鬧,但是沒有分手、沒有變心的夫妻虧茄,到了老年余磨,生活美滿,牽手同行,成為了人生的風景。
3、身處逆境,卻能絕處逢生的人。人生就是起起落落,每個人都會有跌入人生低谷的時候,爬起來你會看見彩虹。
4、有錢有勢,卻非常低調的人。成不驕,敗不餒,砥礪前行,一切都可以勇敢面銷毀察對。

D. 大數據時代,到底什麼樣的專業人才相對吃香

既然你是零基礎,就得從頭睜握學起了
先學習基礎知識,從基本的學起,
首先要深刻理解什麼是大數據,大數據的特點和價值等
先讀一下《大數據時代》
然後,從基本的工具開始,比如EXCEL,SPSS
可以看書《誰說菜鳥不會數據分析》全套書籍
等有了一定的基礎和能力悉春慶後,再學習森汪R語言或PYTHON
如果要做真正的大數據分析,HADOOP估計你也少不了要用的!
-

E. 什麼是大數據時代

(1)大數據時代的提出
最早提出大數據時代到來的是全球知名咨詢公司麥肯錫,他認為數據已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。
(2)大數據時代的來臨
隨著互聯網快速發展、智能手機以及「可佩帶」計算設備的出現,我們的行為、位置,甚至身體生理數據等每一點變化都成為了可被記錄和分析的數據。這些新技術推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB來衡量。
(3)大數據時代的特點
如果簡單來理解什麼是大數據,我們只要抓住大數據的四個特點,大量、高速、多樣、價值。具體來講就是數據體量巨大,數據的爆發性增長迫切的需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據;數據類型繁多,廣泛的數據來源決定了大數據形式的多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統的應用;價值密度低,現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據;數據分析處理速度快,主要通過互聯網傳輸。大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。

F. 大數據時代 怎麼樣才能成為數據科學家

要成為一名大數據科學家,需要學習加實踐的東西非常多,在文章的末尾,我會梳理下需要培養的能力框架供大家參考。下面,我重點談談要成為數據科學家的最核心的能力培養是要尺簡知掌握好大數據應用技術,掌握好大數據基礎平台的構建和大數據產品化、服務化的價值變現框架以及大數據商業化的總體思路。

當前大數據已經深入人心,各行各業都在談論大數據,都想抓住大數據這個新興產業的機會,傳統企業也想利用大數據進行企業的轉型升級。一個個的大數據項目像雨後春筍般被立項動工,懷著領導極大的期望熱火朝天的干起來。可是,當領導們發現投入了大量的人力財力物力,但最終結果不理想、沒有實際結果產出的時候,他們就開始心灰意冷,懷疑起大數據是不是真像人們說的這樣有價值?領導們心裡就會認為,大數據其實就是大家跟風炒作,只是一個泡沫而異?事實上,真的是這樣的嗎?我想一定不是的,大數據絕對不存在泡沫,大數據是真真正正的具有非常大的企業應用價值的。那這樣說,老闆的問題出在哪裡呢?我認為,大數據項目之所以失敗、之所以沒能達到老闆的預期,主要責任在於這個公司的大數據科學家,是他的能力水平不夠,導致老闆對大數據喪失信心。而社會上,正是存在千千萬萬不合格的但又處於企業核心關鍵位置的大數據科學家,才讓一個個大數據項目發揮不出真正的價值來,導致當前大家對大數據所存在的社會困惑,更以至於大家都認為大數據存在泡沫。

一個大數據科學家,要做好大數據工作,真正發揮大數據的價值。需要掌握三方面的應用能力,一是大數據基礎平台的建設能力;二是大數據產品化、服務化的包裝能力;三是大數據產品和服務轉化為商業價值的商業化能力。三個方面,缺一不可。如果只懂得大數據平台建設能力,那麼他只是一個大數據架構師;如果只懂得大數據產品化、服務化能力,那麼他也只是一個數據產品經理;如果只懂得大數據商業化能力,那麼他只是一個好的大數據銷售經理。具備以上單一能力的人,社會上還是非常多的,具備雙重能力的人,也還不少。一個具備大數據平台建設能力,又可實現大數據產品化的人,不能稱之為數據科學家,這一類人能力不錯,可把數據和產品玩得非常溜,企業有時候招到這類人認為已經招對人了,挺高興的。如果這個人作為一個架構師或者高級產品經理或者是一個大數據部門經理,我覺得可以勝任的。但一旦把這個人擺在大數據總監或者更高層的位置上的話,會是不勝任的,因為從商業角度來說,這一類人只會搭積木,不了解數據商業化,更不懂得生意的本質,有時候會是災難性的,會直接導致大數據項陵消目的失敗。下面,我們分別講講這三個方面,都有哪些具體的要求。
大數據平台構建:需要掌握大數據基礎平台架構能力、企業大數據門戶建設能力、大數據應用系統集成能力。由於每個企業業務繁多,企業數據日常只存放在各個業務資料庫中,當運營、產品、分析等人員需要用到數據的時候,就需要訪問多個資料庫來獲取,並且,這些數據是雜亂無章的,各種格式都存在,為了拿到需要的數據,也許需要分析人員花上好幾個小時甚至幾天的時間,使用起來非常的很不方便。另外,數據是企業日常運營過程中,經常使用的資產,獲取數據的低效率直接影響到企業的經營效率,從而影響到企業在激烈的商場中的競爭力。在競爭激烈的商場中,每家企業都追求比別人快一秒,這就需要數據科學家們,幫助企業搭建好完善的大數據基礎平台,讓獲取數據變得容易、簡單、高效。當然,這一步也是大數據產品化、服務化的基礎。說了這么多,我們該怎樣構建企業大數據基礎平台呢?由於我們這是一個大數據職業生涯系列的分享,涉及具體技術方法方面我們將會在大數據應用系列的「企業大數據戰略及價值變現」這個小講中詳細的分享,歡迎大家參加。在這里,我只講兩點需要特別特別注意的地方:
1)把握實施的節奏和策略。通常在企業B輪之後,就要上大數據平台了。如果本身背景比較雄厚的,早期規模都比較大,有實力的話,越早做越好。但是,要非常注意實咐芹施策略,大數據是投入大,短期產出小的項目,如果不懂得實施策略,必然會失敗。怎樣的策略呢?先做好大數據平台架構,規劃好主題模型和層次模型,進行模塊化、框架式設計,然後根據最靠近業務、最靠近營收為准則,去判斷優先實施哪個模塊哪個應用,以期望馬上帶來經濟效益。這一點非常之重要,直接決定了這家企業大數據項目後期還能不能繼續玩下去的根本。這也是我在給企業做大數據解決方案時候,最核心關注點。
2)關注大數據3個平台間的聯動協同效應。是哪三個平台呢?我們前面已經說到,不知大家有沒有留意。大數據基礎平台、大數據門戶(也即大數據分析平台,含用戶畫像)、大數據業務應用系統(如風控系統、個性化推薦系統等)。雖然他們三者之間存在依賴關系,比如大數據分析平台的數據從大數據基礎平台出,個性化推薦系統所用到的用戶畫像從大數據分析平台過來,但我們千萬不要先做完成一個平台再去做另一個平台。我們一定要聯動協同,要同時進行,要小步快跑,快節奏的出效果。那麼,我們怎麼聯動呢?我還是舉一個例子來說明。就說個性化推薦系統吧,我們可以先專心推薦系統最重要的模塊-用戶畫像這個模塊的研發,像產品知識庫、推薦引擎等,可以以最簡單的方式,甚至半人工方式來完成,集中精力完成用戶畫像這個模塊。同時,兼顧大數據分析平台中用戶畫像的框架、大數據基礎平台中用戶主題模型框架來實施,當我們把推薦系統的用戶畫像模塊研發出來的時候,我們也已經把大數據基礎平台的用戶主題模型和大數據分析平台的用戶畫像分析做出來了,一箭三雕,非常之高效。這就是聯動協同效應。
大數據產品化: 需要掌握大數據產品化、數據應用化能力以及數據驅動業務增長技術能力。數據產品化,是企業大數據項目的重要且核心的內容。數據能不能提煉成產品或者服務,進行產品化、服務化轉變,直接影響到數據變現能不能成功,從而影響到企業整體的變現、貨幣化能力。貨幣化能力又直接影響到企業的估值高低。關於這方面例子的企業,社會上非常之多,在這里也不好直接說出來,大家可以自己想想有哪些企業用戶基數非常之大,但多年一直在虧損的,不管是國企還是民企,這一類企業數據變現是不成功的或者是根本沒有進行數據變現的,導致貨幣化困難、盈利能力弱。這是什麼原因呢?核心還是人才,缺乏一個真正的大數據科學家,缺乏能把數據變成產品或者服務的人。有很多企業數據非常多,但是就是不能充分利用起來,不能充分發揮數據的價值,原因就是缺乏這樣一位大數據科學家。 既然數據產品化服務化是這么重要,我們日常有哪些常用數據產品化、服務化方法呢?方法非常之多,但總結起來就那麼幾類,要成為一個數據科學家,那是必須要掌握的。
1)精準營銷和個性化推薦系統。非常之常見,幾乎每家有一定規模的企業都會做的大數據產品項目。它們是通過推送用戶喜歡的產品或者服務給用戶來獲得價值收益的。大家平時在淘寶上買東西,看到的「猜你喜歡」或者是「買了**可能你還想買**」等模塊就是典型的個性化推薦系統的產品。個性化推薦系統,商業效果非常顯著,產出也比較好衡量,只需要看應用了這個產品後,相同的業務營收比不使用該推薦系統提升多少就可以看出來了。關於個性化推薦系統是一個什麼東西,有哪些構成,實現原理是怎樣的,等等技術或具體產品問題,我們會在大數據應用系列分享的「如何利用大數據做個性化推薦」小講中,詳細的給大家分享,歡迎大家參加。
2)搜索平台、廣告服務平台。顯然,這兩個主要是通過廣告來創收的。大凡有一定用戶量的線上平台,基本都會通過廣告來獲得收益,這是各家企業普遍的最重要的變現手段。廣告商業模式多種多樣,有購買搜索關鍵詞的,也有搜索競價排名的,有購買黃金展位的,也有閃屏直接推送的,等等。商業模式多種多樣,但都脫不了其是將目標產品或者服務通過廣告位推送給恰當的人群,要不是曝光、要不點擊、要不購買等來獲取收益的。例子大家都知道啦,網路的主營業務就是靠廣告收入。
3)風控模型產品和服務。這塊在金融或者電商等互聯網企業應用得比較廣泛。是企業業務發展的重要支柱。風控可以帶來兩個方面的收益。對內,通過風控,識別欺詐和騙貸,降低由於欺詐帶來的放貸本金的損失,其實就是收益。對外,可以直接輸出風控服務能力,直接的產生營收。這方面的例子太多了,社會上做風控服務的大數據公司,不低於一百家,都是靠輸出風控數據服務來賺錢的。至於風控有哪些可以賺錢的產品和服務,以及風控的技術模型等一些問題,我們留到大數據應用系列分享的「如何利用大數據做好大數據風控」這一小講中,再詳細的給大家分享,歡迎大家參加。
4)大數據信息產品或解決方案服務。這一類企業也非常多,有提供會員服務的,有提供APP使用的,有提供SAAS雲服務的,等等,大大小小的提供大數據工具或者信息產品服務的企業不低於一千家。舉個例子,萬德資訊就是通過大數據手段,收集各種有價值信息進行整理加工後,提供給用戶的。關於這一類企業,在這里我就不詳細討論了。因為實在是太零散了,各家企業五花八門。
大數據商業化:需要掌握數據商業化能力,數據價值變現能力,需要培養有強烈的商業敏感度的習慣。作為一個數據科學家,搭建好大數據基礎平台,做好數據的產品化、服務化,還是遠遠不夠的。企業生存就是為了積累數據,未來企業融資是靠數據,企業的上市估值更是靠數據。所以,我們所做的一切都是為了數據。可是,有數據還是非常不夠的,做出好的數據,也許一時能忽悠住投資人,忽悠住工作的同事,但是不能長期忽悠投資人,你有多少多少用戶量、交易流水多少多少個億,那都沒用的。長期來看一定是靠盈利的,是要為投資人創造收益的。企業的商業化是否成功,在很大程度上特別是對於一些本身是做大數據的公司來說,都是要靠大數據去驅動做數據化變現的。常用的一些方法有:
1)賣流量。通過大數據精準營銷或者設計一些數據產品比如個性化推薦來支持廣告的精準投放和產品的銷售以及交叉銷售等。這一類非常常見,我想不講大家應該也能明白。如果不明白的,可以看看淘寶網的一些廣告位和商品的推薦位,就會清楚了。
2)賣服務。現在很多大數據公司,通過把自己的核心能力包裝成一整套解決方案,提供給客戶。比如,大數據風控公司,提供大數據風控雲服務,把自己擁有的數據加上自身的建模能力優勢包裝成解決方案,提供給客戶。
3)賣產品。通過把數據產品化,比如,淘寶上特別多的提供各種分析結果給淘寶店家的數據產品。
4)賣數據。貴陽的國家大數據交易平台,其實就是在做這個事情。在互聯網金融領域,直接賣數據也是各大數據公司非常之常見的一種營收模式。
關於大數據商業化變現還有非常多的方法,這就需要數據科學家在日常工作管理中,做好歸納總結,創新思維,創造出各種各樣的數據商業化模式來。
(1)成為大數據科學家需要掌握大數據基礎科學技術
大數據技術:分布式大規模數據處理技術和工具,如hadoop、spark生態系統技術
數據挖掘技術:掌握常用的數據挖掘演算法模型、機器學習演算法、深度學習、人工智慧技術
數據採集技術:掌握數據採集的常用技術框架和工具
數據可視化技術:掌握數據可視化方法和技術及工具
(2)成為大數據科學家需要具備大數據應用技術
大數據平台構建:大數據架構能力、離線和實時分布式計算環境的建設
大數據產品化: 數據產品化、數據應用能力,數據驅動業務增長等技術
大數據商業化:數據商業化能力,數據價值變現能力,有強烈的商業敏感度
(3)成為大數據科學家需要具備大數據實戰能力
最好是大數據的各個工作崗位都曾經做過一遍,熟悉數據產品、數據分析、數據挖掘、
數據轉換清洗處理、數據採集、數據可視化等技術,能夠通盤的指揮大夥作戰。
要成為大數據科學家那就必須具備10年以上的大數據行業實踐經歷,當然啦,
特別厲害的人, 這個時間可以縮短再縮短。
(4)成為大數據科學家需要具備大數據戰略、產業化思維
大數據戰略:大數據平台戰略、人才戰略、時機戰略、選型戰略、管理戰略、決策戰略等
大數據思維:增長思維、動態思維、歷史思維、顛覆思維等
大數據行業視野:站在行業的視角,掌控各行各業的大數據動態情況
大數據產業的引領者: 具備大數據產業塑造能力,是產業的引領者
(5)成為大數據科學家需要具備一定的科研能力
需要具備專利論文能力,最好是能夠著書立說。各大大數據公司,
都有專利論文的要求的,作為企業數據最高領導者,必然需要具備專利敏感性。

G. 互聯網時代,大數據思維造就「最後贏家」

互聯網時代,大數據思維造就「最後贏家」
在信息時代,數據已經變成了一種資源。它和黃金、能源一樣寶貴,卻又能實現反復的利用,不斷刺激經濟的發展。
透過一組數據可以看到,大數據產業強勁的發展勢頭:目前,全球IT行業正以5.5%速度不斷增長;可是,大數據產業卻以40%的增幅快速成長。通過對比,我們能夠認定,大數據產業可以成為全球經濟發展的驅動力,可以成為經濟發展的革新者。
在全球龐大的人群和應用市場下,探索以大數據為基礎的解決方案,深入洞察復雜且充滿變化的市場成為了企業提高自身競爭力的重要手游橋段。僅憑直觀感受,任何人都能感覺到大數據時代已經來了。
大數據時代的思維變換
維克托 邁爾 舍恩伯格在緩磨賣《大數據時代》中提到,大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道「是什麼」,而不需要知道「為什麼」。這顛覆了千百年來人類的思維慣例,對人類的認知和與世界交流的方式提出了全新的挑戰。
可以說,這本書的價值體現在三個方面:第一,關於大數據的思維變換,重在大數據擾逗變革時代的價值與觀念變化;第二,關於大數據影響商業變革的三個要素:即數據、技術與創新思維之間的互動;第三,是關於大數據泛化下的治理與隱私。
與中國企業相比,美國企業知道大數據價值並且能挖掘大數據的隱藏價值,從而獲得最大利益,可以說他們已經建立了大數據思維,從而促使他們不斷創新挖掘更好的數據。美國收集的數據要比中國多得多,他們不光搜集可以理解的數據,同時也收集「不能理解」的數據,並且會花大量資源來存儲,讓數據一直有價值。而反觀國內,大多數企業還把大數據作為一種在市場營銷手段,但是大數據還可以幫助人們改變商業模式以及盈利模式,這才是大數據最大的價值所在。美國與中國相比,最不同一點就在於他們有大數據思維,懂得如何利用大數據的價值,但這並不代表中國無法逾越美國,中國的優勢在於掌握數據量比較大,而在大數據時代「大」也非常重要。
城市的發展需要大數據,沒有數據的輔佐城市就不會得到最優化的發展方案,大數據能幫助政府領導者進行更好的決策,尤其是公共政策的決策。城市需要知道如何建立基礎設施來收集數據,同時要利用大數據開拓思路,讓數據來說話,並且藉助多方力量,即便是大數據方面的專家,但是並不一定有最正確的決定或最有效的方法來利用大數據,所以政府在這方面需要多聽取私人企業或機構的意見,大數據時代合作、溝通、廣泛吸納意見是非常重要的。
大數據時代的「最後贏家」
大數據所面臨困境並不在技術方面,而是在數據流動方面。大數據時代,一個人的智慧不能幫助我們更好的利用大數據價值,所以要讓數據流動起來,讓不同的部門和不同的公司都參與進來,進而優化數據。
一方面,人們要信任大數據,不要害怕大數據暴露隱私,需要建立完善的大數據保護。不信任就導致人們不願意讓其他機構知道數據,如果不能使用這些數據就更談不上大數據的價值。另一方面,一定要接受大數據使用限制問題,不要賦予大數據過多的意義。
那麼,在大數據時代究竟誰會是最後的「贏家」?至少在筆者看來,贏家不會是那些已經掌握大量數據的大企業,而應該是一些默默無聞的企業因為大數據而發生飛躍性的變化。所以數據好比一座金山,但是數據在那裡放著,這座金山就不會屬於你,企業需要做的是了解並挖掘這些「金山」,成為大數據的贏家。
大數據是看待現實的新角度,不僅改變了市場營銷、生產製造,同時也改變了商業模式。數據本身就是價值來源,這也就意味著新的商業機會,沒有哪一個行業能對大數據產生「免疫能力」,適應大數據才能在這場變革中繼續生存下去。

H. 大數據的七大核心價值是什麼

移動互聯時代 大數據的應用價值

隨著大數據的發展,企業也越來越重視數據相關的開發和應用,從而獲取更多的市場機會。一方面,大數據能夠明顯提升企業數據的准確性和及時性;此外還能夠降低企業的交易摩擦成本;更為關鍵的是,大數據能夠幫助企業分析大量數據而進一步挖掘細分市場的機會,最終能夠縮短企業產品研發時間、提升企業在商業模式、產品和服務上的創新力,大幅提升企業的商業決策水平,降低了企業經營的風險。

一、大數據助企業挖掘市場機會探尋細分市場

大數據能夠幫助企業分析大量數據而進一步挖掘市場機會和細分市場,然後對每個群體量體裁衣般的採取獨特的行動。獲得好的產品概念和創意,關鍵在於我們到底如何去搜集消費者相關的信息,如何獲得趨勢,挖掘出人們頭腦中未來會可能消費的產品概念。用創新的方法解構消費者的生活方式,剖析消費者的生活密碼,才能讓吻合消費者未來生活方式的產品研發不再成為問題,如果你了解了消費者的密碼,就知道其潛藏在背後的真正需求。大數據分析是發現新客戶群體、確定最優供應商、創新產品、理解銷售季節性等問題的最好方法。

在數字革命的背景下,對企業營銷者的挑戰是從如何找到企業產品需求的人到如何找到這些人在不同時間和空間中的需求;從過去以單一或分散的方式去形成和這群人的溝通信息和溝通方式,到現在如何和這群人即時溝通、即時響應、即時解決他們的需求,同時在產品和消費者的買賣關系以外悶告鬧,建立更深層次的夥伴間的互信、雙贏和可信賴的關系。

大數據進行高密度分析,能夠明顯提升企業數據的准確性和及時性;大數據能夠幫助企業分析大量數據而進一步挖掘細分市場的機會,最終能夠縮短企業產品研發時間、提升企業在商業模式、產品和螞罩服務上的創新力,大幅提升企業的商業決策水平。因此,大數據有利於企業發掘和開拓新的市場機會;有利於企業將各種資源合理利用到目標市場;有利於制定精準的經銷策略;有利於調整市場的營銷策略,大大降低企業經營的風險。

企業利用用戶在互聯網上的訪問行為偏好能為每個用戶勾勒出一副「數字剪影」,為具有相似特徵的用戶組提供精確服務滿足用戶需求,甚至為每個客戶量身定製。這一變革將大大縮減企業產品與最終用戶的溝通成本。例如:一家航空公司對從未乘過飛機的人很感興趣(細分標準是顧客的體驗)。而從未乘過飛機的人又可以細分為害怕飛機的人,對乘飛機無所謂的人以及對乘飛機持肯定態度的人(細分標準是態度)。在持肯定態度的人中,又包括高收入有能力乘飛機的人(細分標準是收入能力)。於是這家航空公司就把力量集中在開拓那些對乘飛機持肯定態度,只是還沒有乘過飛機的高收入群體。通過對這些人進行量身定製、精準營銷取得了很好的效果。

二、大數據提高決策能力

當前,企業管理者還是更多依賴個人經驗和直覺做決策,而不是基於數據。在信息有限、獲取成本高昂,而且沒有被數字化的時代,讓身居高位的人做決策是情有可原的,但是大數據時代,就必須要讓數據說話。

大數據能夠有效的幫助各個行業用戶做出更為准確的商業決策,從而實現更大的商業價值,它從誕生開始就是站在決策的角度出發。雖然不同行業的業務不同,所產生的數據及其所支撐的管理形態也千差萬別,但從數據的獲取,數據的整合,數據的加工,數據的綜合應用,數據的服務和推廣,數據處理的生命線流程來分析,所有行業的模式是一致的。

這種基於大數據決策的特點是:一是量變到質變,由於數據被廣泛挖掘,決策所依據的信息完整性越來越高,有信息的理性決策在迅速擴大,拍腦袋的盲目決策在急劇縮小。二是決策技術含量、知識含量大幅度提高。由於雲計算出現,人類沒有被海量數據所淹沒,能夠高效率駕御海量數據,生產有價值的決策信息。三是大數據決策催生友梁了很多過去難以想像的重大解決方案。如某些葯物的療效和毒副作用,無法通過技術和簡單樣本驗證,需要幾十年海量病歷數據分析得出結果;做宏觀經濟計量模型,需要獲得所有企業、居民以及政府的決策和行為海量數據,才能得出減稅政策最佳方案;反腐倡廉,人類幾千年歷史都沒解決,最近通過微博和人肉搜索,貪官在大數據的海洋中無處可藏,人們看到根治的希望等等。

如果在不同行業的業務和管理層之間,增加數據資源體系,通過數據資源體系的數據加工,把今天的數據和歷史數據對接,把現在的數據和領導和企業機構關心的指標關聯起來,把面向業務的數據轉換成面向管理的數據,輔助於領導層的決策,真正實現了從數據到知識的轉變,這樣的數據資源體系是非常適合管理和決策使用的。

在宏觀層面,大數據使經濟決策部門可以更敏銳地把握經濟走向,制定並實施科學的經濟政策;而在微觀方面,大數據可以提高企業經營決策水平和效率,推動創新,給企業、行業領域帶來價值。

三、大數據創新企業管理模式,挖掘管理潛力

當下,有多少企業還會要求員工像士兵一樣無條件服從上級的指示?還在通過大量的中層管理者來承擔管理下屬和傳遞信息的職責?還在禁止員工之間談論薪酬等信息?《華爾街日報》曾有一篇文章就說,NO。這一切已經過時了,嚴格控制,內部猜測和小道消息無疑更會降低企業效率。一個管理學者曾經將企業內部關系比喻為成本和消耗中心,如果內部都難以協作或者有效降低管理成本和消耗,你又如何指望在今天瞬息萬變的市場和競爭環境下生存、創新和發展呢?

我們試著想想,當購物、教育、醫療都已經要求在大數據、移動網路支持下的個性化的時代,創新已經成為企業的生命之源,我們還有什麼理由還要求企業員工遵循工業時代的規則,強調那種命令式集中管理、封閉的層級體系和決策體制嗎?當個體的人都可以通過佩戴各種感測器,搜集各種來自身體的信號來判斷健康狀態,那樣企業也同樣需要配備這樣的感測系統,來實時判斷其健康狀態的變化情況。

今天信息時代機器的性能,更多決定於晶元,大腦的存儲和處理能力,程序的有效性。因而管理從注重系統大小、完善和配合,到注重人,或者腦力的運用,信息流程和創造性,以及職工個性滿足、創造力的激發。

在企業管理的核心因素中,大數據技術與其高度契合。管理最核心的因素之一是信息搜集與傳遞,而大數據的內涵和實質在於大數據內部信息的關聯、挖掘,由此發現新知識、創造新價值。兩者在這一特徵上具有高度契合性,甚至可以標稱大數據就是企業管理的又一種工具。因為對於任何企業,信息即財富,從企業戰略著眼,利用大數據,充分發揮其輔助決策的潛力,可以更好地服務企業發展戰略。

大數據時代,數據在各行各業滲透著,並漸漸成為企業的戰略資產。數據分析挖掘不僅本身能幫企業降低成本:比如庫存或物流,改善產品和決策流程,尋找到並更好的維護客戶,還可以通過挖掘業務流程各環節的中間數據和結果數據,發現流程中的瓶頸因素,找到改善流程效率,降低成本的關鍵點,從而優化流程,提高服務水平。大數據成果在各相關部門傳遞分享,還可以提高整個管理鏈條和產業鏈條的投入回報率。

四、大數據變革商業模式催生產品和服務的創新

在大數據時代,以利用數據價值為核心,新型商業模式正在不斷涌現。能夠把握市場機遇、迅速實現大數據商業模式創新的企業,將在IT發展史上書寫出新的傳奇。

大數據讓企業能夠創造新產品和服務,改善現有產品和服務,以及發明全新的業務模式。回顧IT歷史,似乎每一輪IT概念和技術的變革,都伴隨著新商業模式的產生。如個人電腦時代微軟憑借操作系統獲取了巨大財富,互聯網時代谷歌抓住了互聯網廣告的機遇,移動互聯網時代蘋果則通過終端產品的銷售和應用商店獲取了高額利潤。

縱觀國內,以金融業務模式為例,阿里金融基於海量的客戶信用數據和行為數據,建立了網路數據模型和一套信用體系,打破了傳統的金融模式,使貸款不再需要抵押品和擔保,而僅依賴於數據,使企業能夠迅速獲得所需要的資金。阿里金融的大數據應用和業務創新,變革了傳統的商業模式,對傳統銀行業帶來了挑戰。

還有,大數據技術可以有效的幫助企業整合、挖掘、分析其所掌握的龐大數據信息,構建系統化的數據體系,從而完善企業自身的結構和管理機制;同時,伴隨消費者個性化需求的增長,大數據在各個領域的應用開始逐步顯現,已經開始並正在改變著大多數企業的發展途徑及商業模式。如大數據可以完善基於柔性製造技術的個性化定製生產路徑,推動製造業企業的升級改造;依託大數據技術可以建立現代物流體系,其效率遠超傳統物流企業;利用大數據技術可多維度評價企業信用,提高金融業資金使用率,改變傳統金融企業的運營模式等。

過去,小企業想把商品賣到國外要經過國內出口商、國外進口商、批發商、商場,最終才能到達用戶手中,而現在,通過大數據平台可以直接從工廠送達到用戶手中,交易成本只是過去的十分之一。以我們熟悉的網購平台淘寶為例,每天有數以萬計的交易在淘寶上進行,與此同時相應的交易時間、商品價格、購買數量會被記錄,更重要的是,這些信息可以與買方和賣方的年齡、性別、地址、甚至興趣愛好等個人特徵信息相匹配。運用匹配的數據,淘寶可以進行更優化的店鋪排名和用戶推薦;商家可以根據以往的銷售信息和淘寶指數進行指導產品供應、生產和設計,經營活動成本和收益實現了可視化,大大降低了風險,賺取更多的錢;而與此同時,更多的消費者也能以更優惠的價格買到了更心儀的產品。

維克托曾預言2020年,大數據時代就會真正來臨。在那個時候,最經常會用到的應用就是個性化生活所需要的,尤其是智能手機的應用。

五、大數據讓每個人更加有個性

對個體而言,大數據可以為個人提供個性化的醫療服務。比如,我們的身體功能可能會通過手機、移動網路進行監控,一旦有什麼感染,或身體有什麼不適,我們都可以通過手機得到警示,接著信息會和手機庫進行對接或者咨詢相關專家,從而獲得正確的用葯和其他治療。

過去我們去看病,醫生只能對我們的當下身體情況做出判斷,而在大數據的幫助下,將來的診療可以對一個患者的累計歷史數據進行分析,並結合遺傳變異、對特定疾病的易感性和對特殊葯物的反應等關系,實現個性化的醫療。還可以在患者發生疾病症狀前,提供早期的檢測和診斷。早期發現和治療可以顯著降低肺癌給衛生系統造成的負擔,因為早期的手術費用是後期治療費用的一半。

還有,在傳統的教育模式下,分數就是一切,一個班上幾十個人,使用同樣的教材,同一個老師上課,課後布置同樣的作業。然而,學生是千差萬別的,在這個模式下,不可能真正做到「因材施教」。

如一個學生考了90分,這個分數僅僅是一個數字,它能代表什麼呢?90分背後是家庭背景、努力程度、學習態度、智力水平等,把它們和90分聯系在一起,這就成了數據。大數據因其數據來源的廣度,有能力去關注每一個個體學生的微觀表現:如他在什麼時候開始看書,在什麼樣的講課方式下效果最好,在什麼時候學習什麼科目效果最好,在不同類型的題目上停留多久等等。當然,這些數據對其他個體都沒有意義,是高度個性化表現特徵的體現。同時,這些數據的產生完全是過程性的:課堂的過程,作業的情況,師生或同學的互動情景而最有價值的是,這些數據完全是在學生不自知的情況下被觀察、收集的,只需要一定的觀測技術與設備的輔助,而不影響學生任何的日常學習與生活,因此它的採集也非常的自然、真實。

在大數據的支持下,教育將呈現另外的特徵:彈性學制、個性化輔導、社區和家庭學習、每個人的成功大數據支撐下的教育,就是要根據每一個人的特點,釋放每一個人本來就有的學習能力和天分。

此外,維克托還建議中國政府要進一步補錄資料庫。政府以前提供財政補貼,現在可以提供資料庫,打造創意服務。在美國就有完全基於政府提供的資料庫,如為企業提供機場、高速公路的數據,提供航班可能發生延誤的概率,這種服務這可以幫助個人、消費者更好地預測行程,這種類型的創新,就得益於公共的大數據。

六、智慧驅動下的和諧社會

美國作為全球大數據領域的先行者,在運用大數據手段提升社會治理水平、維護社會和諧穩定方面已先行實踐並取得顯著成效。

近年來,在國內,「智慧城市」建設也在如火如荼的開展。截止去年底,我國的國家智慧城市試點已達193個,而公開宣布建設智慧城市的城市超過400個。智慧城市的概念包含了智能安防、智能電網、智慧交通、智慧醫療、智慧環保等多領域的應用,而這些都要依託於大數據,可以說大數據是「智慧」的源泉。

在治安領域,大數據已用於信息的監控管理與實時分析、犯罪模式分析與犯罪趨勢預測,北京、臨沂等市已經開始實踐利用大數據技術進行研判分析,打擊犯罪。

在交通領域,大數據可通過對公交地鐵刷卡、停車收費站、視頻攝像頭等信息的收集,分析預測出行交通規律,指導公交線路的設計、調整車輛派遣密度,進行車流指揮控制,及時做到梳理擁堵,合理緩解城市交通負擔。

在醫療領域,部分省市正在實施病歷檔案的數字化,配合臨床醫療數據與病人體征數據的收集分析,可以用於遠程診療、醫療研發,甚至可以結合保險數據分析用於商業及公共政策制定等等。

伴隨著智慧城市建設的火熱進行,政府大數據應用已進入實質性的建設階段,有效拉動了大數據的市場需求,帶動了當地大數據產業的發展,大數據在各個領域的應用價值已得到初顯。

七、大數據如何預言未來?

著名的瑪雅預言,盡管背後有著一定的天文知識基礎,但除催生了一部很火的電影《2012》外,其實很多人的生活尚未受到太大的影響。現在基於人類地球上的各種能源存量,以及大氣受污染、冰川融化的程度,我們獲取真的可以推算出按照目前這種工業生產、生活的方式,人類在地球上可以存活的年數。《第三次工業革命》中對這方面有很深入的解釋,基於精準預測,發現現有模式是死路一條後,人類就可以進行一些改變,這其實就是一種系統優化。

這種結合之前情景研究,不斷進行系統優化的過程,將賦予系統生命力,而大數據就是其中的血液和神經系統。通過對大數據的深入挖掘,我們將會了解系統的不同機體是如何相互協調運作的,同樣也可以通過對他們的了解去控制機體的下一個操作,甚至長遠的維護和優化。從這個角度講,基於網路的大數據可以看作是人類社會的神經中樞,因為有了網路和大數據人類社會才開始靈活起來,而不像以前那麼死板。基於大數據,個體之間相互連接有了基礎,相互的交互過程得到了簡化,各種交易的成本減少很多。廠家等服務提供方可以基於大數據研發出更符合消費者需求的服務,機構內部的管理也更為細致,有了血液和神經系統的社會才真的擁有生命活力。

結語

透過以上這些行業典型的大數據應用案例和場景,不難悟出大數據的典型的核心價值。大數據是看待現實的新角度,不僅改變了市場營銷、生產製造,同時也改變了商業模式。數據本身就是價值來源,這也就意味著新的商業機會,沒有哪一個行業能對大數據產生免疫能力,適應大數據才能在這場變革中繼續生存下去。

當下,正處於數據大爆發的時代,如何獲取這些數據並對這些數據進行有效分析就顯得尤為重要。各種企業機構之間的競爭非常殘酷。如何基於以往的運行數據,對未來的運行模式進行預測,從而提前進行准備或者加以利用、調整,對很多企業機構其實是一種生死存亡的問題。這樣一種情況同樣適用於國家級別。正因為這一點,目前無論是在企業級別還是國家級別都開始研究、部署大數據。

可見,大數據應用已經凸顯出了巨大的商業價值,觸角已延伸到零售、金融、教育、醫療、體育、製造、影視、政府等各行各業。你可能會問這些具體價值實現的推動者有哪些呢?就是所謂的大數據綜合服務提供商,從實踐情況看,主要包括大數據解決方案提供商、大數據處理服務提供商和數據資源提供商三個角色,分別向大數據的應用者提供大數據服務、解決方案和數據資源。

未來大數據還將徹底改變人類的思考模式、生活習慣和商業法則,將引發社會發展的深刻變革,同時也是未來最重要的國家戰略之一。

I. 做電商以數據說話,能駕馭大數據你便是贏家

做電商以數據說話,能駕馭大數據你便是贏家_數據分析師

還是原來的老話,做電商就是做業績,做電商以結果為導向,以數據說話!

為什麼這樣說呢?

在移動互聯網時代,數據就是金錢,所有的大平台都是依靠數據支撐,說白了就是會員支撐,如餓了么,據有關數據占據外賣市場的35.13%的份額,覆蓋全國超過260個城市,日均訂單超過200萬,想想200萬什麼概念,送兩個字「牛B」

目前我也入住他們平台,從7月份數據來看的話,遠遠勝過其它的外賣平台,如大眾外賣、網路外賣、到家、口碑等,大約500多單,銷售約在3萬左右的樣子,跟其它的對手比起來相當一大截,畢竟剛上線,沒有銷量,我是用戶,我也是會選擇銷量好的商戶下單,這也是數據魅力,所以經常看到銷量越好的商戶訂單越來越大,而銷量不好的則一直很平淡,這其實是被消費者固有的心理所操縱的形為。

自互聯網+興起後,天天有人說大數據,粉絲經濟,其實之前我一點都沒有注重過,因為再好也是別人的,看看自己的數據,可憐的很,是大數據嗎,能產生粉絲經濟嗎?對我而言,只要是沒有真實操作過,沒有依據的數據都為O,我也從來不會因為別人做的好就盲目跟風,向來只是跟其互聯網的發展與時俱進,順勢而為,所以一切都顯得很自然,每當出現一個數據我都會去測試,是否真實的存在,每一次成功的測試,我便會放大N倍,產生的結果自然也是顯而易見啦!

雖然在傳統企業的電商人是最苦逼的,因為他們剛接觸到互聯網、又迎來了互聯網+O2O,而轉型的速度太慢,跟不上節奏,他們只是知道概念的東西,沒有深入了解,所以很多時候不被認可,不被理解,對譽旁的也是錯的,錯的反而是對的,但通過不斷的測試,當理直氣壯的拿著大數據說話的時候,一切都變得如此的簡單,只是需要時間去測試,有的數據周期很長,而不是直接引用方案去執行,兩個字「太慢」不過再慢也要重視數據這塊,一個客戶也要提供最好的服務,大數據我等你噢!

互聯網之所以發展很快,是因為將一切都透明話,所有的平台都可以在後台看到最真實的數據,客戶來源、時間、區域、途徑,簡直就是一個赤裸裸的美女,站在你的面前,你是否心動呢?如果不動,那就沒戲了,也就是因為這些數據,讓我們更加了解客戶,更好的營銷我們的產品,任何的平台也都是根據數據去優化做更符合用戶喜好的平台,如網頁、活動形式、消費方式、誤樂等等,也正是因為這些數據造就了商界億萬級大咖的傳奇故事。

互聯網電商迅速崛起,我覺得最重要的是把客戶的價值看的非常重要,利用CRM會員管理體系,整合客戶的數據資源,鎖定客戶終身消費,提供終生消費的價值,多好啊,想想一個是一次消費慶豎橡,啥數據也沒有,一個是終身消費,有數據有錢才是硬道理。

你想硬起來嘛?想要有多硬很簡單,從今日起,注重於客戶的價值,注重於CRM客戶數據,互聯網時代,只要是駕馭了這些數據,成功是指日可待,如今都站在風口上,一切皆有可能!

以上纖梁是小編為大家分享的關於做電商以數據說話,能駕馭大數據你便是贏家的相關內容,更多信息可以關注環球青藤分享更多干貨

J. 大數據時代已經到來,什麼樣的財務人最值錢

1)一個會學習的財務人
學習是一種思維,學習是一種習慣,學習更是一種能力。
俗話說,活到老學到老,做會計工作尤其如此。近兩年財稅新政日新月異,營改增後續工作的重擔加上金稅三期上線後的頻頻預警企業以及稅務稽查下橡純的嚴征管,逼迫財務人員必須天天學習;只想不勞而獲、固步自封的會計必將被淘汰彎鎮出局!

2)有管理能梁鬧咐力的財務人
在美國有500萬財務專業人士當中,80%以上的人在企業內部從事著管理會計工作,20%的從事著記賬核算。
而中國恰恰相反,全國1700萬持證人員中,財務會計工作人員比例高達近80%,僅僅有20%的會計屬於管理型會計,管理會計的人才缺口高達300萬以上。
並且在今後,大多數基礎階會計會被機器人取代,高級管理型財務負責操縱機器人工作,所以在未來5年大量的核算型會計將被淘汰出局;未來10年中國將急需大量的管理型會計人員。

3)一個有思維,能創造價值的財務人
對於企業而言,會計人員是企業一項特殊的資產,會計人員的內在價值在於其為企業工作期間對企業所做貢獻的大小。
如果能夠幫助企業加強管理能力和提高經濟效益,為企業提供更高價值的服務,那麼自然是不會被淘汰的。

閱讀全文

與大數據時代什麼樣的人才是贏家相關的資料

熱點內容
產品被判定為受限產品怎麼解決 瀏覽:28
汽車漂移技術要多少錢 瀏覽:212
為什麼產品排名始終靠後 瀏覽:937
健身膠囊如何建立身體數據檔案 瀏覽:888
無需手術就能生發是什麼技術 瀏覽:839
二手房交易銳費怎麼分 瀏覽:764
大三如何做產品經理 瀏覽:738
什麼叫取現沖正交易 瀏覽:954
精選速購怎麼做代理 瀏覽:532
嘉定區市場包裝材料哪個好 瀏覽:429
村合作社的產品怎麼外銷 瀏覽:866
在交易貓上架商品要多久審核完 瀏覽:673
微博一周數據怎麼看 瀏覽:104
床上用品批發市場哪裡 瀏覽:810
影響產品銷售成本的因素有哪些 瀏覽:35
曼龍怎麼做代理 瀏覽:540
大學駕校如何找代理 瀏覽:62
怎麼銷售開拓檳榔市場 瀏覽:870
信息輔助家園共育活動有什麼 瀏覽:448
廣州服裝批發市場白馬什麼定位 瀏覽:623