⑴ 如何獲取大數據
問題一:怎樣獲得大數據? 很多數據都是屬於企業的商業秘密來的,你要做大數據的一些分析,需要獲得海量的數據源,再此基礎上進行挖掘,互聯網有很多公開途徑可以獲得你想要的數據,通過工具可以快速獲得,比如說象八爪魚採集器這樣的大數據工具,都可以幫你提高工作效率並獲得海量的數據採集啊
問題二:怎麼獲取大數據 大數據從哪裡來?自然是需要平時對旅遊客群的數據資料累計最終才有的。
如果你們平時沒有收集這些數據 那自然是沒有的
問題三:怎麼利用大數據,獲取意向客戶線索 大數據時代下大量的、持續的、動態的碎片信息是非常復雜的,已經無法單純地通過人腦來快速地選取、分析、處理,並形成有效的客戶線索。必須依託雲計算的技術才能實現,因此,這樣大量又精密的工作,眾多企業紛紛藉助CRM這款客戶關系管理軟體來實現。
CRM幫助企業獲取客戶線索的方法:
使用CRM可以按照統一的格式來管理從各種推廣渠道獲取的潛在客戶信息,匯總後由專人進行篩選、分析、跟蹤,並找出潛在客戶的真正需求,以提供滿足其需求的產品或服務,從而使潛在客戶轉變為真正為企業帶來利潤的成交客戶,增加企業的收入。使用CRM可以和網站、電子郵件、簡訊等多種營銷方式相結合,能夠實現線上客戶自動抓取,迅速擴大客戶線索數量。
問題四:如何進行大數據分析及處理? 大數據的分析從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?1. 可視化分析。大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。2. 數據挖掘演算法。大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。3. 預測性分析。大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。4. 語義引擎。非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。5.數據質量和數據管理。大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。大數據的技術數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。數據存取:關系資料庫、NOSQL、SQL等。基礎架構:雲存儲、分布式文件存儲等。數據處理:自然語言處理(NLP,Natural Language Processing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理解(NLU,Natural Language Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。數據挖掘:分類(Classification)、估計(Estimation)、預測(Predic膽ion)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化......>>
問題五:網路股票大數據怎麼獲取? 用「網路股市通」軟體。
其最大特色是主打大數據信息服務,讓原本屬於大戶的「大數據炒股」變成普通網民的隨身APP。
問題六:通過什麼渠道可以獲取大數據 看你是想要哪方面的,現在除了互聯網的大數據之外,其他的都必須要日積月累的
問題七:通過什麼渠道可以獲取大數據 有個同學說得挺對,問題傾向於要的是數據,而不是大數據。
大數據講究是全面性(而非精準性、數據量大),全面是需要通過連接來達成的。如果通過某個app獲得使用該app的用戶的終端信息,如使用安卓的佔比80%,使用iPhone的佔比為20%, 如果該app是生活訂餐的應用,你還可以拿到使用安卓的這80%的用戶平時網上訂餐傾向於的價位、地段、口味等等,當然你還會獲取這些設備都是在什麼地方上網,設備的具體機型你也知道。但是這些數據不斷多麼多,都不夠全面。如果將這部分用戶的手機號或設備號與電子商務類網站數據進行連接,你會獲取他們在電商網站上的消費數據,傾向於購買的品牌、價位、類目等等。每個系統可能都只存儲了一部分信息,但是通過一個連接標示,就會慢慢勾勒出一個或一群某種特徵的用戶的較全面的畫像。
問題八:如何從大數據中獲取有價值的信息 同時,大數據對公共部門效益的提升也具有巨大的潛能。如果美國醫療機構能夠有效地利用大數據驅動醫療效率和質量的提高,它們每年將能夠創造超過3萬億美元的價值。其中三分之二是醫療支出的減少,占支出總額超過8%的份額。在歐洲發達國家, *** 管理部門利用大數據改進效率,能夠節約超過14900億美元,這還不包括利用大數據來減少欺詐,增加稅收收入等方面的收益。
那麼,CIO應該採取什麼步驟、轉變IT基礎設施來充分利用大數據並最大化獲得大數據的價值呢?我相信用管理創新的方式來處理大數據是一個很好的方法。創新管道(Innovation pipelines)為了最終財務價值的實現從概念到執行自始至終進行全方位思考。對待大數據也可以從相似的角度來考慮:將數據看做是一個信息管道(information pipeline),從數據採集、數據訪問、數據可用性到數據分析(4A模型)。CIO需要在這四個層面上更改他們的信息基礎設施,並運用生命周期的方式將大數據和智能計算技術結合起來。
大數據4A模型
4A模型中的4A具體如下:
數據訪問(Access):涵蓋了實時地及通過各種資料庫管理系統來安全地訪問數據,包括結構化數據和非結構化數據。就數據訪問來說,在你實施越來越多的大數據項目之前,優化你的存儲策略是非常重要的。通過評估你當前的數據存儲技術並改進、加強你的數據存儲能力,你可以最大限度地利用現有的存儲投資。EMC曾指出,當前每兩年數據量會增長一倍以上。數據管理成本是一個需要著重考慮的問題。
數據可用性(Availability):涵蓋了基於雲或者傳統機制的數據存儲、歸檔、備份、災難恢復等。
數據分析(Analysis):涵蓋了通過智能計算、IT裝置以及模式識別、事件關聯分析、實時及預測分析等分析技術進行數據分析。CIO可以從他們IT部門自身以及在更廣泛的范圍內尋求大數據的價值。
用信息管道(information pipeline)的方式來思考企業的數據,從原始數據中產出高價值回報,CIO可以使企業獲得競爭優勢、財務回報。通過對數據的完整生命周期進行策略性思考並對4A模型中的每一層面都做出詳細的部署計劃,企業必定會從大數據中獲得巨大收益。 望採納
問題九:如何獲取互聯網網大數據 一般用網路蜘蛛抓取。這個需要掌握一門網路編程語言,例如python
問題十:如何從網路中獲取大量數據 可以使用網路抓包,抓取網路中的信息,推薦工具fiddler
⑵ 工業設計做項目提案,市場調研數據怎麼找
以前是自己在網上找衫裂行業數據,不過一般很難找到有用的,只能做些粗淺伍塌昌的分析,現在大數據興起,做調研方便些,像我找腔扒到的決策狗大數據,做消費品行業的數據,接這方面的項目做數據調研就輕鬆了。
⑶ 數據分析中數據從哪找
1、簡單、公開的數據集
先分享一些科研機構、企業、政府會開放的一些數據集和一些專業的數據下載網站。這些數據集一般都比較完善、質量相對較高,拿到手數據清洗的工作比較少,適合新手做一些簡單基礎的分析。
中國統計信息網:全國各級政府各年度的國民經濟和社會發展統計信息,部分數據免費
國家統計局:各種民生相關的統計數據,而且所有數據都是免費,而且這個網站的友情鏈接里還有很多其他地方的數據以及國外數據。
2、數據可視化項目數據集
最常見的數據可視化項目就是製作某某地區人均收入區別的信息圖,找數據可視化項目相關的數據集的時候,我們希望數據集盡量“干凈”,減少數據清洗的工作,數據要足夠有趣,能夠支撐起豐富的圖表。
3、數據建模、機器學習的數據集
UCI:UCI是加州大學歐文分校開放的經典數據集,是機器學習領域最有名的數據存儲庫。包含各種數據集,比如經典的泰坦尼克號倖存預測到最新的數據(如空氣質量和GPS軌跡)。
阿里天池:作為國內互聯網龍頭阿里巴巴旗下的大數據競賽網站,提供了很多比賽數據集可以練手,說不定還能順手拿個獎,賺點獎金。
⑷ 如何運用大數據
我們如何使用大數據?
第一點,明確數據分析的目的
首先,您必須知道手中的數據要怎麼處理,這意味著您需要清楚需求以及要從數據中獲取什麼。讓我們以產品經理為例。當許多產品經理設計自己的產品時,他們可能會花費大量時間來設計產品,但是他們忽略了該產品是否可以成功。這很難滿足客戶的需求。因此,如果要最大化自己的數據的價值,則必須事先考慮要執行的操作。
第二點,必須擴大數據收集方式
關於數據收集,通常有四種方法。它們是從外部行業數據分析報告(例如iResearch)獲得的;積極從社區論壇(如AppStore,客戶服務反饋和微博)收集用戶反饋;參加問卷調查設計和用戶訪談等調查,收集並觀察用戶在使用產品時遇到的問題和感受的第一手數據;從記錄的用戶行為軌跡研究數據。
⑸ 大數據學習:提取大數據7 個關鍵步驟是什麼
【導讀】在大數據分析師日常工作中,提取數據是非常平常的一件工作,不過不同人有著不一樣的結果,如果分析與企業所需有所偏頗,那麼數據分析師很難在大數據項目上取得成功,今天我們就來進行大數據學習,提取大數據7
個關鍵步驟是什麼?教你提取出大數據黃金,為此小編有以下幾點建議,一起來看看吧!
1.從傳統的關系資料庫數據開始
這是存儲在SQL或其他關系資料庫中的列和行中的數據,用戶可以輕松查詢,如果您正在銷售中,則可以開始查看不同的產品,查看在哪裡和向誰銷售了多少產品,退回了多少產品,庫存水平等等,僅憑此數據,就可以在銷售,庫存水平,客戶位置,服務記錄等之間建立許多關系,由於與銷售有關的數據太多,因此對於企業用戶來說,銷售是一個容易的領域,在這個區域中添加大數據非常容易,可以提高查詢的深度,因此您可以真正找到想要的難以捉摸的黃金。
2.將大數據添加到您現有的關系資料庫查詢中
一旦公司了解了關系資料庫的銷售數據,肯定會出現新的問題,一家公司可能會在沒有任何解釋的時間內看到銷售激增,這些銷售高峰是反常的,因此該公司決定在其關系數據中添加一些大數據,以弄清正在發生的事情,它做出的大數據選擇之一就是引入天氣信息,這可能會傳入作為XML數據流,該公司發現,在天氣多雲的日子裡,銷售往往會激增,這可能會促使人們進行購物等活動。」
3.逐步向查詢中添加更多大數據
通過將大數據添加到傳統的銷售查詢數據中,該公司現在已進入大數據領域,從這里開始,可以輕松添加更多類型的大數據,進行銷售報告的合理的下一步可能是添加客戶和其他人對您的產品的評論,一旦開始對銷售提出疑問,並意識到某些類型的數據如何能夠幫助您更好地理解業務,就很容易添加到大數據源中。
4.逐步培訓您的員工
許多公司缺乏數據科學家和大數據分析師所需的技能,這就是從關系資料庫數據開始然後逐步擴展到添加不同類型的大數據的方法如此吸引人的方法,您可以逐步增加員工對大數據的了解,那裡有工具和顧問可以根據需要為您提供幫助,但是當您的員工從他們已經非常了解的關系資料庫基礎開始時,開始使用大數據就不是很大的飛躍了,他們追加並在這個基礎上擴大。
5.考慮數據的混合報告環境
一旦開始將大數據添加到關系資料庫查詢中,就需要為該數據定義另一個數據存儲庫,非結構化大數據不能駐留在關系資料庫中,您需要做的是定義一個大數據資料庫,將傳統數據和大數據的組合移到該大數據資料庫中,好消息是您不必為此花費新的資金來購買新的伺服器和存儲,有許多雲供應商可以為您託管Hadoop或其他大數據資料庫中的數據,他們也可以管理這些數據,對於仍在努力從大數據中獲取業務意義的公司而言,最好的消息是,他們可以逐步地通過從傳統資料庫啟動業務和IT員工,將其業務和IT員工轉移到生產性大數據項目中。和每個人都已經熟悉的報告基礎。
這可以減輕業務用戶和IT員工的焦慮,因為他們可以從他們所了解的內容入手。當您進入更具雄心的大數據項目時,它還降低了失敗的風險。
以上就是小編今天給大家整理發送的關於「大數據學習:提取大數據7
個關鍵步驟是什麼?」的相關內容,希望對大家有所幫助。那我們如何入門學習大數據呢,如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑹ 個人大數據怎麼查
1、打開微信,然後點擊手機屏幕右上角的加號按鈕,點擊添加朋友。
⑺ 創建大數據項目的五大步驟
創建大數據項目的五大步驟
企業需要積極的提升他們的數據管理能力。這並非意味著他們應該制定繁瑣的流程和監督機制。明智的企業會配合他們的數據活動的生命周期制定靈活的流程和功能:根據業務需求啟動更輕更嚴格、更強大的功能,並根據需求的增加來提升質量或精度。
一些企業正在利用新興技術來應對新的數據源,但大多數企業仍然面臨著需要努力管理好他們已經掌握或者應當掌握的數據信息的困境,而當他們試圖部署大數據功能時,發現自己還需要面對和處理新的以及當下實時的數據。
為了能夠實現持久成功的大數據項目,企業需要把重點放在如下五個主要領域。
1、確立明確的角色分工和職責范圍。
對於您企業環境中的所有的數據信息,您需要對於這些數據信息所涉及的關鍵利益相關者、決策者有一個清晰的了解和把控。當數據信息在企業的系統傳輸過程中及其整個生命周期中,角色分工將發生變化,而企業需要對這些變化有一個很好的理解。當企業開始部署大數據項目之後,務必要明確識別相關數據的關鍵利益相關者,並做好這些數據信息的完善和迭代工作。
2、加強企業的數據治理和數據管理功能。
確保您企業的進程足夠強大,能夠滿足和支持大數據用戶和大數據技術的需求。進程可以是靈活的,並應充分考慮到業務部門和事務部門的需求,這些部門均伴有不同程度的嚴謹性和監督要求。
確保您企業的參考信息架構已經更新到包括大數據。這樣做會給未來的項目打好最好的使用大數據技術和適當的信息管理能力的基礎。
確保您企業的元數據管理功能足夠強大,能夠包括並關聯所有的基本元數據組件。隨著時間的推移,進行有序的分類,滿足業務規范。
一旦您開始在您企業的生產部門推廣您的解決方案時,您會希望他們長期持續的使用該解決方案,所以對架構功能的定義並監督其發揮的作用是至關重要的。確保您企業的治理流程包括IT控制的角色,以幫助企業的利益相關者們進行引導項目,以最佳地利用這些數據信息。其還應該包括您企業的安全和法務團隊。根據我們的經驗,使用現有的監督機制能夠達到最佳的工作狀態,只要企業實施了大數據應用,並專注於快速在進程中處理應用程序,而不是阻礙進程的通過。
3、了解環境中的數據的目的和要求的精度水平,並相應地調整您企業的期望值和流程。
無論其是一個POC,或一個已經進入主流業務流程的項目,請務必確保您對於期望利用這些數據來執行什麼任務,及其質量和精度處於何種級別有一個非常清晰的了解。這種方法將使得企業的項目能夠尋找到正確的數據來源和利益相關者,以更好地評估這些數據信息的價值和影響,進而讓您決定如何最好地管理這些數據信息。更高的質量和精度則要求更強大的數據管理和監督能力。
隨著您企業大數據項目的日趨成熟,考慮建立一套按照數據質量或精確度分類的辦法,這將使得數據用戶得以更好的了解他們所使用的是什麼,並相應地調整自己的期望值。例如,您可以使用白色、藍色或金色來分別代表原始數據、清理過的數據,經過驗證可以有針對性的支持分析和使用的數據。有些企業甚至進一步完善了這一分類方法:將數據從1到5進行分類,其中1是原始數據,而5是便於理解,經過整理的、有組織的數據。
4、將對非結構化的內容的管理納入到您企業的數據管理能力。
非結構化數據一直是企業業務運營的一部分,但既然現在我們已經有了更好的技術來探索,分析和這些非結構化的內容,進而幫助改善業務流程和工業務洞察,所以我們最終將其正式納入我們的數據管理是非常重要的。大多數企業目前都被困在了這一步驟。
資料庫中基本的、非結構化的數據是以評論的形式或者自由的形式存在的,其至少是資料庫的一部分,應該被納入到數據管理。但挖掘這些數據信息則是非常難的。
數字數據存儲在傳統的結構化資料庫和業務流程外,很少有許多的治理范圍分組和數據管理的實現,除了當其被看作是一個技術問題時。一般來說,除了嚴格遵守相關的安全政策,今天的企業尚未對其進行真正有效的管理。當您的企業開始大跨步實現了大數據項目之後,您會發現這一類型的數據信息迅速進入了您需要管理的范疇,其輸出會影響您企業的商業智能解決方案或者甚至是您企業的業務活動。積極的考慮將這些數據納入到您企業的數據管理功能的范圍,並明確企業的所有權,並記錄好這些數據信息的諸如如何使用、信息來源等等資料。
不要採取「容易的輕松路線」,單純依靠大數據技術是您企業唯一正式的非結構化數據管理的過程。隨著時間的推移,企業將收集越來越多的非結構化數據,請務必搞清楚哪些數據是好的,哪些是壞的,他們分別來自何處,以及其使用是否一致,將變得越來越重要,甚至在其生命周期使用這個數據都是至關重要的。
要保持這種清晰,您可以使用大數據和其他工具,以了解您企業所收集的數據信息,確定其有怎樣的價值,需要怎樣的管理,這是至關重要的。大多數進入您企業的大數據系統的非結構化數據都已經經過一些監控了,但通常是作為一個BLOB(binarylargeobject)二進制大對象和非結構化的形式進行的。隨著您的企業不斷的在您的業務流程中「發掘」出這一類型的數據,其變得更加精確和有價值。其可能還具有額外的特點,符合安全,隱私或法律和法規的元素要求。最終,這些數據塊可以成為新的數據元素或添加到現有的數據,但您必須有元數據對其進行描述和管理,以便盡可能最有效地利用這些數據。
5、正式在生產環境運行之前進行測試。
如果您的企業做的是一次性的分析或完整的一次性的試點,這可能並不適用於您的企業,但對大多數企業來說,他們最初的大數據工作將迅速發展,他們找到一個可持續利用他們已經挖掘出的極具價值的信息的需求。這意味著需要在您的沙箱環境中進行測試,然後才正式的在您的生產環境運。
⑻ 大數據基礎項目如何找數據
中國統計信息肢嫌網里找。姿飢宏
全國各級政府各跡冊年度的國民經濟和社會發展統計信息,部分數據免費
其中很多涉及到國家的統計信息,能找到大量有用的數據
⑼ 實戰篇--有關做大數據項目的開發流程
有關做大數據項目的開發流程
數據處理--->後端調用--->前端展示
下面這兩種方式,區別就在於。
1)新數據的加入,影響有多大(想一下定死的東西和變動的東西的區別)
2)交互性也是一個關鍵的影響點
最重要的是,就是前端有什麼功能模塊有價值,有可看的地方,就得自己想了
1)可以從多維度出發。比如,總共100w數據,你能知道個總數,然後就沒了(這個是一個維度)。在分個日期,是不是就知道日期的數據數量了(比單看一友昌個總數有意義,從一個單純的總數變成每個日期段的總數。這是兩個維度)。然後再多個地區選擇(可以看各個地區的情況。就是第三個維度了)。。。。。。還得結合用什麼圖表比較明顯的突出
區別:
1)最大的區別是互不幹擾,兩個人同時可以同時開發一個項目
2)還得考慮版本問題(如本來用的web3.0,結果你換成web4.0來開發。版本不一樣可能不兼容好此扒)
3)擴展功能也不方便(對於一體化(前後端不分離的來說),分離的話擴展就相對簡扒鄭便,後端就是後端,前端就是前端)
4)耦合度方面(開發效率、獨立性、測試范圍等)
比如有Tomcat、nginx伺服器