導航:首頁 > 數據處理 > 有哪些新奇的數據監測的方法

有哪些新奇的數據監測的方法

發布時間:2023-05-22 13:03:37

Ⅰ 剛接觸拼多多,請教下拼多多數據監測工具有哪些

拼多多數據監測工具有多多情報通、多多雷達等,多多情報通(原多多參謀)是用來分析拼多多市場大盤數據的第三方軟體,像市場行業、選品定價、大盤走勢、店鋪分析、商品排行榜、關鍵詞類目排名和行業熱搜詞等功能,都可以查看。以商家實際需求為核心開發,通過軟體系統為廣大拼多多商家數據化運營提供綜合解決方案。

數據分析常用的方法有哪些

1、簡單趨勢


通過實時訪問趨勢了解供應商及時交貨情況。如產品類型,供應商區域(交通因子),采購額,采購額對供應商佔比。


2、多維分解


根據分析需要,從多維度對指標進行分解。例如產品采購金額、供應商規模(需量化)、產品復雜程度等等維度。


3、轉化漏斗


按照已知的轉化路徑,藉助漏斗模型分析總體和每一步的轉化情況。常見的轉化情境有不同供應商及時交貨率趨勢等。


4、用戶分群


在精細化分析中,常常需要對有某個特定行為的供應商群組進行分析和比對;數據分析需要將多維度和多指標作為分群條件,有針對性地優化供應鏈,提升供應鏈穩定性。


5、細查路徑


數據分析可以觀察供應商的行為軌跡,探索供應商與本公司的交互過程;進而從中發現問題、激發靈感亦或驗證假設。


6、留存分析


留存分析是探索用戶行為與回訪之間的關聯。一般我們講的留存率,是指“新新供應商”在一段時間內“重復行為”的比例。通過分析不同供應商群組的留存差異、使用過不同功能供應商的留存差異來找到供應鏈的優化點。


7、A/B 測試


A/B測試就是同時進行多個方案並行測試,但是每個方案僅有一個變數不同;然後以某種規則優勝略汰選擇最優的方案。數據分析需要在這個過程中選擇合理的分組樣本、監測數據指標、事後分析和不同方案評估。

Ⅲ 數據採集技術的方法有哪些

大數據技術在數據採集方面採用了哪些方法:

1、離線採集:
工具:ETL;
在數據倉庫的語境下,ETL基本上就是數據採集的代表,包括數據的提取(Extract)、轉換(Transform)和載入(Load)。在轉換的過程中,需要針對具體的業務場景對數據進行治理,例如進行非法數據監測與過濾、格式轉換與數據規范化、數據替換、保證數據完整性等。
2、實時採集:
工具:Flume/Kafka;
實時採集主要用在考慮流處理的業務場景,比如,用於記錄數據源的執行的各種操作活動,比如網路監控的流量管理、金融應用的股票記賬和 web 伺服器記錄的用戶訪問行為。在流處理場景,數據採集會成為Kafka的消費者,就像一個水壩一般將上游源源不斷的數據攔截住,然後根據業務場景做對應的處理(例如去重、去噪、中間計算等),之後再寫入到對應的數據存儲中。這個過程類似傳統的ETL,但它是流式的處理方式,而非定時的批處理Job,些工具均採用分布式架構,能滿足每秒數百MB的日誌數據採集和傳輸需求
3、互聯網採集:
工具:Crawler, DPI等;
Scribe是Facebook開發的數據(日誌)收集系統。又被稱為網頁蜘蛛,網路機器人,是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本,它支持圖片、音頻、視頻等文件或附件的採集。

除了網路中包含的內容之外,對於網路流量的採集可以使用DPI或DFI等帶寬管理技術進行處理。

4、其他數據採集方法
對於企業生產經營數據上的客戶數據,財務數據等保密性要求較高的數據,可以通過與數據技術服務商合作,使用特定系統介面等相關方式採集數據。比如八度雲計算的數企BDSaaS,無論是數據採集技術、BI數據分析,還是數據的安全性和保密性,都做得很好。
數據的採集是挖掘數據價值的第一步,當數據量越來越大時,可提取出來的有用數據必然也就更多。只要善用數據化處理平台,便能夠保證數據分析結果的有效性,助力企業實現數據驅動~

Ⅳ 全網的輿情信息數據怎麼監測和搜集呢

網上的信息量十分巨大,要做好全網輿情監測,數據源的獲取是做輿情監測的第一步。從獲取的方法上有簡單的取巧辦法,也有復雜到需要應對各類網站難題的情況,具體監測和搜集辦法如下:
第一,做輿情監測往往是有主題、有定向的去做, 所以很容易就可以找到監測對象相關的關鍵字,然後利用這些關鍵字去各類搜索入口爬取數據。
第二,根據不同的業務場景梳理不同的網站列表, 例如主題中談到的只要監測熱門的話題,這部分最容易的就是找門戶類、熱門類網站,爬取他們的首頁推薦,做文章的聚合,這樣就知道哪類是最熱門的了。這里的難度在於:網站五花八門;反扒策略各有不同;數據獲取後怎麼提取到想要的內容。
第三,可通過輿情監測的核心技術是信息採集和輿情分析兩大塊。例如蟻坊軟體的全網輿情監測系統由兩個子系統組成:自動監測子系統(監測層)與分析瀏覽子系統(分析層與呈現層)。用途:用以監測新聞、論壇社區、自媒體、APP、博客、微博、SNS、問答、貼吧等相關自己單位的輿論信息,通過對海量網路輿論信息進行實時的自動採集,分析,匯總,並識別其中的關鍵信息,及時通知到相關人員,為正確輿論導向及收集群眾意見提供幫助的一套信息化系統。

Ⅳ 有哪些神奇好用的數據採集工具

一款銷售線索的數據採集工具;

模糊搜索,根據關鍵詞在三大搜索引擎中搜索,採集一些銷售信息;

對銷售線索採集是一款不錯的程序;

更多採集軟體程序定製開發

Ⅵ 常用的風險監測技術有哪些

(1)面向高性能、專用特種感測器的研發。在礦井復雜環境下,通用的感測器無法滿足抗干擾、低能耗、高精度等要求。近些年,越來越多的科研工作者傾向於專用綜合感測器的研發,該類感測器具有低成本、低功耗、時間的一致性、數據精度一致性等特點。具體來講:①專用綜合感測器集成了多種類型的感測器晶元,可以通過多源、異構數據的融合分析,對井下溫度、氣體濃度等數據進行綜合分析,提高感測器的檢測精度;②專用感測器通過採用節能技術,可以滿足井下開采及施工過程中的低能耗需求,減少電池更換、頻繁充電等操作,提高工作效率;③專用感測器可以根據不同的施工環境和應用需求定製晶元,提供高精度定位等服務。

(2)利用人工智慧的理論和方法進行礦井施工現場風險監測。金屬礦山井下施工作業現場環境復雜,傳統方法主要通過人工檢測與分析方式對風險進行監測與評估。目前,物聯網技術的應用主要是針對現場環境等進行數據採集、傳輸和分析,但是對施工現場的風險評估,特別是預測性評估仍然需要進一步研究。鑒於人工智慧在大數據分析、智能決策領域的廣泛應用,有必要進一步研究人工智慧在礦井施工現場的數據分析與智能管控技術,其中需要重點研究信息融合與機器學習技術,大幅提升井下現場數據的融合、檢測技術水平,實現現場施工風險的精確診斷。

Ⅶ 數據分析方法有哪些

常用的數據分析方法有:聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析。

1、聚類分析(Cluster Analysis)

聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。

2、因子分析(Factor Analysis)

因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。

3、相關分析(Correlation Analysis)

相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。

4、對應分析(Correspondence Analysis)

對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。

5、回歸分析

研究一個隨機變數Y對另一個(X)或一組(X1,X2,?,Xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。

6、方差分析(ANOVA/Analysis of Variance)

又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。

想了解更多關於數據分析的信息,推薦到CDA數據認證中心看看,CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。

Ⅷ 大數據科學家需要掌握的幾種異常值檢測方法

引言

異常值檢測與告警一直是工業界非常關注的問題,自動准確地檢測出系統的異常值,不僅可以節約大量的人力物力,還能盡早發現系統的異常情況,挽回不必要的損失。個推也非常重視大數據中的異常值檢測,例如在運維部門的流量管理業務中,個推很早便展開了對異常值檢測的實踐,也因此積累了較為豐富的經驗。本文將從以下幾個方面介紹異常值檢測。

1、異常值檢測研究背景

2、異常值檢測方法原理

3、異常值檢測應用實踐

異常值檢測研究背景

異常值,故名思議就是不同於正常值的值。 在數學上,可以用離群點來表述,這樣便可以將異常值檢測問題轉化為數學問題來求解。

異常值檢測在很多場景都有廣泛的應用,比如:

1、流量監測

互聯網上某些伺服器的訪問量,可能具有周期性或趨勢性:一般情況下都是相對平穩的,但是當受到某些黑客攻擊後,其訪問量可能發生顯著的變化,及早發現這些異常變化對企業而言有著很好的預防告警作用。

2、金融風控

正常賬戶中,用戶的轉賬行為一般屬於低頻事件,但在某些金融詐騙案中,一些嫌犯的賬戶就可能會出現高頻的轉賬行為,異常檢測系統如果能發現這些異常行為,及時採取相關措施,則會規避不少損失。

3、機器故障檢測

一個運行中的流水線,可能會裝有不同的感測器用來監測運行中的機器,這些感測器數據就反應了機器運行的狀態,這些實時的監測數據具有數據量大、維度廣的特點,用人工盯著看的話成本會非常高,高效的自動異常檢測演算法將能很好地解決這一問題。

異常值檢測方法原理

本文主要將異常值檢測方法分為兩大類:一類是基於統計的異常值檢測,另一類是基於模型的異常值檢測。

基於統計的方法  

基於模型的方法

1、基於統計的異常值檢測方法

常見的基於統計的異常值檢測方法有以下2種,一種是基於3σ法則,一種是基於箱體圖。

3σ法則  

箱體圖

3σ法則是指在樣本服從正態分布時,一般可認為小於μ-3σ或者大於μ+3σ的樣本值為異常樣本,其中μ為樣本均值,σ為樣本標准差。在實際使用中,我們雖然不知道樣本的真實分布,但只要真實分布與正太分布相差不是太大,該經驗法則在大部分情況下便是適用的。

箱體圖也是一種比較常見的異常值檢測方法,一般取所有樣本的25%分位點Q1和75%分位點Q3,兩者之間的距離為箱體的長度IQR,可認為小於Q1-1.5IQR或者大於Q3+1.5IQR的樣本值為異常樣本。

基於統計的異常檢測往往具有計算簡單、有堅實的統計學基礎等特點,但缺點也非常明顯,例如需要大量的樣本數據進行統計,難以對高維樣本數據進行異常值檢測等。

2、基於模型的異常值檢測

通常可將異常值檢測看作是一個二分類問題,即將所有樣本分為正常樣本和異常樣本,但這和常規的二分類問題又有所區別,常規的二分類一般要求正負樣本是均衡的,如果正負樣本不均勻的話,訓練結果往往會不太好。但在異常值檢測問題中,往往面臨著正(正常值)負(異常值)樣本不均勻的問題,異常值通常比正常值要少得多,因此需要對常規的二分類模型做一些改進。

基於模型的異常值檢測一般可分為有監督模型異常值檢測和無監督模型異常值檢測,比較典型的有監督模型如oneclassSVM、基於神經網路的自編碼器等。 oneclassSVM就是在經典的SVM基礎上改進而來,它用一個超球面替代了超平面,超球面以內的值為正常值,超球面以外的值為異常值。

經典的SVM  

1

 基於模型的方法

2

基於神經網路的自編碼器結構如下圖所示。

自編碼器(AE)

將正常樣本用於模型訓練,輸入與輸出之間的損失函數可採用常見的均方誤差,因此檢測過程中,當正常樣本輸入時,均方誤差會較小,當異常樣本輸入時,均方誤差會較大,設置合適的閾值便可將異常樣本檢測出來。但該方法也有缺點,就是對於訓練樣本比較相近的正常樣本判別較好,但若正常樣本與訓練樣本相差較大,則可能會導致模型誤判。

無監督模型的異常值檢測是異常值檢測中的主流方法,因為異常值的標注成本往往較高,另外異常值的產生往往無法預料,因此有些異常值可能在過去的樣本中根本沒有出現過, 這將導致某些異常樣本無法標注,這也是有監督模型的局限性所在。 較為常見的無監督異常值檢測模型有密度聚類(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一種典型的無監督聚類方法,對某些類型的異常值檢測也能起到不錯的效果。該演算法原理網上資料較多,本文不作詳細介紹。

IF演算法最早由南京大學人工智慧學院院長周志華的團隊提出,是一種非常高效的異常值檢測方法,該方法不需要對樣本數據做任何先驗的假設,只需基於這樣一個事實——異常值只是少數,並且它們具有與正常值非常不同的屬性值。與隨機森林由大量決策樹組成一樣,IsolationForest也由大量的樹組成。IsolationForest中的樹叫isolation tree,簡稱iTree。iTree樹和決策樹不太一樣,其構建過程也比決策樹簡單,因為其中就是一個完全隨機的過程。

假設數據集有N條數據,構建一顆iTree時,從N條數據中均勻抽樣(一般是無放回抽樣)出n個樣本出來,作為這顆樹的訓練樣本。

在樣本中,隨機選一個特徵,並在這個特徵的所有值范圍內(最小值與最大值之間)隨機選一個值,對樣本進行二叉劃分,將樣本中小於該值的劃分到節點的左邊,大於等於該值的劃分到節點的右邊。

這樣得到了一個分裂條件和左、右兩邊的數據集,然後分別在左右兩邊的數據集上重復上面的過程,直至達到終止條件。 終止條件有兩個,一個是數據本身不可再分(只包括一個樣本,或者全部樣本相同),另外一個是樹的高度達到log2(n)。 不同於決策樹,iTree在演算法裡面已經限制了樹的高度。不限制雖然也可行,但出於效率考慮,演算法一般要求高度達到log2(n)深度即可。

把所有的iTree樹構建好了,就可以對測試數據進行預測了。預測的過程就是把測試數據在iTree樹上沿對應的條件分支往下走,直到達到葉子節點,並記錄這過程中經過的路徑長度h(x),即從根節點,穿過中間的節點,最後到達葉子節點,所走過的邊的數量(path length)。最後,將h(x)帶入公式,其中E(.)表示計算期望,c(n)表示當樣本數量為n時,路徑長度的平均值,從而便可計算出每條待測數據的異常分數s(Anomaly Score)。異常分數s具有如下性質:

1)如果分數s越接近1,則該樣本是異常值的可能性越高;

2)如果分數s越接近0,則該樣本是正常值的可能性越高;

RCF演算法與IF演算法思想上是比較類似的,前者可以看成是在IF演算法上做了一些改進。針對IF演算法中沒有考慮到的時間序列因素,RCF演算法考慮了該因素,並且在數據樣本采樣策略上作出了一些改進,使得異常值檢測相對IF演算法變得更加准確和高效,並能更好地應用於流式數據檢測。

IF演算法

RCF演算法

上圖展示了IF演算法和RCF演算法對於異常值檢測的異同。我們可以看出原始數據中有兩個突變異常數據值,對於後一個較大的突變異常值,IF演算法和RCF演算法都檢測了出來,但對於前一個較小的突變異常值,IF演算法沒有檢測出來,而RCF演算法依然檢測了出來,這意味著RCF有更好的異常值檢測性能。

異常值檢測應用實踐

理論還需結合實踐,下面我們將以某應用從2016.08.16至2019.09.21的日活變化情況為例,對異常值檢測的實際應用場景予以介紹:

從上圖中可以看出該應用的日活存在著一些顯著的異常值(比如紅色圓圈部分),這些異常值可能由於活動促銷或者更新迭代出現bug導致日活出現了比較明顯的波動。下面分別用基於統計的方法和基於模型的方法對該日活序列數據進行異常值檢測。

基於3σ法則(基於統計)

RCF演算法(基於模型)

從圖中可以看出,對於較大的突變異常值,3σ法則和RCF演算法都能較好地檢測出來, 但對於較小的突變異常值,RCF演算法則要表現得更好。

總結

上文為大家講解了異常值檢測的方法原理以及應用實踐。綜合來看,異常值檢測演算法多種多樣 ,每一種都有自己的優缺點和適用范圍,很難直接判斷哪一種異常檢測演算法是最佳的, 具體在實戰中,我們需要根據自身業務的特點,比如對計算量的要求、對異常值的容忍度等,選擇合適的異常值檢測演算法。

接下來,個推也會結合自身實踐,在大數據異常檢測方面不斷深耕,繼續優化演算法模型在不同業務場景中的性能,持續為開發者們分享前沿的理念與最新的實踐方案。

Ⅸ 數據採集的方法有哪些 數據採集的基本方法

1、數據採集根據採集數據的類型可以分為不同的方式,主要方式有:感測器採集、爬蟲、錄入、導入、介面等。

2、數據採集的基本方法:

(1)感測器監測數據:通過感測器,即現在應用比較廣的一個詞:物聯網。通過溫濕度感測器、氣體感測器、視頻感測器等外部硬體設備與系統進行通信,將感測器監測到的數據傳至系統中進行採集使用。

(2)第二種是新聞資訊類互聯網數據,可以通過編寫網路爬蟲,設置好數據源後進行有目標性的爬取數據。

(3)第三種通過使用系統錄入頁面將已有的數據錄入至系統中。

(4)第四種方式是針對已有的批量的結構化數據可以開發導入工具將其導入系統中。

(5)第五種方式,可以通過API介面將其他系統中的數據採集到本系統中。

閱讀全文

與有哪些新奇的數據監測的方法相關的資料

熱點內容
深圳怡寶總代理怎麼樣 瀏覽:418
c程序輸出如何四行星號 瀏覽:659
實型數據關鍵字有哪些 瀏覽:735
aiot上哪些交易所 瀏覽:245
奶茶店有什麼可以代理的 瀏覽:296
技術大牛需要什麼條件 瀏覽:379
東莞黃江哪個市場比較旺 瀏覽:146
m4運動手環怎麼信息推送 瀏覽:721
虛擬貨幣交易的錢怎麼提出來 瀏覽:785
北方人才市場是什麼性質的單位 瀏覽:414
劍魂怎麼交易元寶 瀏覽:164
鎮賚縣南市場是哪個社區 瀏覽:37
股市交易之前如何入市 瀏覽:374
買產品送股權有什麼好處 瀏覽:367
從哪裡可以學到股票交易 瀏覽:216
繪本代理商怎麼做 瀏覽:539
醫院糾紛法律程序走了怎麼辦 瀏覽:22
微信有未讀信息怎麼生成 瀏覽:144
神魔大陸手游怎麼交易 瀏覽:794
產品不被客戶認可怎麼辦 瀏覽:517