導航:首頁 > 數據處理 > 大數據有什麼崗位

大數據有什麼崗位

發布時間:2022-03-07 15:03:21

『壹』 大數據行業就業方向有哪些大數據技術就業崗位有哪些

方向:大數據開發方向,數據挖掘、數據分析和機器學習方向,大數據運維和雲計算方向

就業崗位:

1、大數據工程師

大數據工程師的話其實包涵了很多,比如大數據開發,測試,運維,挖據等等,各個崗位不同薪資水平也不大相同。總的來說的話它共有6093個崗位在智聯招聘上招聘,平均工資也在11643元。

2、Hadoop開發工程師

職位描述:參與優化改進新浪集團數據平台基礎服務,參與日傳輸量超過百TB的數據傳輸體系優化,日處理量超過PB級別的數據處理平台改進,多維實時查詢分析系統的構建優化。

3、大數據研發工程師

職位描述:

構建分布式大數據服務平台,參與和構建公司包括海量數據存儲、離線/實時計算、實時查詢,大數據系統運維等系統;服務各種業務需求,服務日益增長的業務和數據量。

4、大數據架構師

大數據架構師的招聘崗位有1446個,從招聘的薪資來看,大數據架構師基本薪資都是15K~60K,大數據架構師的薪資可以說是相當可觀的,在大數據行業里,大數據架構師的酬勞可以說是領先與其他的,所以大數據架構師對於人才的要求也是比較嚴格的。

5、大數據分析師

工作職責:根據公司產品和業務需求,利用數據挖掘等工具對多種數據源進行診斷分析,建設徵信分析模型並優化,為公司徵信運營決策、產品設計等方面提供數據支持;負責項目的需求調研、數據分析、商業分析和數據挖掘模型等,通過對運行數據進行分析挖掘背後隱含的規律及對未來的預測。

『貳』 大數據專業畢業生就業崗位有哪些

大數據的擇業方向有大數據開發方向、數據挖掘數據分析和機器學習方向、大數據運維和雲計算方向,主要從事互聯網行業相關工作。
大數據課程難度大,同時有大專本科學歷要求!但工作需求大,畢業以後可以從事的崗位還是比較多的,回報高,待遇在年薪30~50萬之間,如果是互聯網大廠更高。

『叄』 大數據的就業崗位有哪些

大數據崗位高薪清單對於求職者來說,大數據只是所從事事業的一個方向,而職業崗位則是決定做什麼事?大數據從業者/求職者可以根據自身所學技術及興趣特徵,選擇一個適合自己的大數據相關崗位。下面為大家介紹十種與大數據相關的熱門崗位。
1 ETL研發企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL
2 Hadoop開發隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。
3 可視化工具開發可視化開發就是在可視化工具提供的圖形用戶界面上,通過操作界面元素,有可視化開發工具自動生成相關應用軟體,輕松跨越多個資源和層次連接所有數據。過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。
4 信息架構開發大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。
5 數據倉庫研究為方便企業決策,出於分析性報告和決策支持的目的而創建的數據倉庫研究崗位是一種所有類型數據的戰略集合。為企業提供業務智能服務,指導業務流程改進和監視時間、成本、質量和控制。
6 OLAP開發OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。
7 數據科學研究數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。8 數據預測分析營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。
8 數據預測分析營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。
9 企業數據管理企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗和規范化,將數據導入數據倉庫中,成為一個可用的版本。
10 數據安全研究數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。

『肆』 大數據可以從事哪些職位,大數據就業方向有哪些

大數據行業就業指南:三大方向 ,十大職位。

大數據主要的三大就業方向:大數據系統研發類人才、大數據應用開發類人才和大數據分析類人才。

十大職位:一、ETL研發;二、Hadoop開發;三、可視化(前端展現)工具開發;四、信息架構開發;五、數據倉庫研究;六、OLAP開發;七、數據科學研究;八、數據預測(數據挖掘)分析;九、企業數據管理;十、數據安全研究。

『伍』 大數據這個行業裡面的全部崗位都有什麼_要全部的

細分的有20多個
大數據在全球范圍內的IT就業市場佔有越來越重要的影響。根據Gartner公司提供的數據,截至到2015年將有440萬的IT工作來支持大數據,僅美國就會有190萬的IT工作產生。看看我們列出的排名前20位的大數據職位及其職責列表。

首席數據官Chief DataOfficer
職責:
a. 與行政人員,數據所有者和數據管理員共同為內部和外部的客戶創建數據管理策略並且實現數據的准確性和制定工作流程的需求目標。
b. 引導EIM程序,業務數據管理員和數據服務供應商提供數據管理活動。
c. 建立數據政策,標准,組織並且督促EIM概念的組織成立。
b. 監督組織內的數據質量工作的監管,並且為不能被數據治理委員會解決的數據管理問題提供幾種治理。
e. 建立數據供應商管理策略,並通過CIO/CTO和IT組織的協調來監督完善EIM項目。
f. 領導創建程序的業務定義,數據管理目標和EIM計劃執行的原則。
g. 負責企業的信息/數據管理預算和數據相關的系統活動。

數據分析師Data analyst
職責:
a. 協調客戶和員工之間的關系,提供所有的數據分析和支持。
b. 對所有結果進行數據分析,並為客戶准備演講。
c. 對數據進行審核並且為客戶解決業務相關的問題。
d. 與工程和產品管理團隊進行協調,並確定所有交接的准確性,並准備好總結。
e. 進行數據分析並且傳遞給終端客戶。
f. 監督所有的客戶問題,並為經理和主管的協調和交接提供幫助。
g. 監督和管理所有和客戶發票並且對所有的支付問題進行及時的評價。
h. 管理客戶發票的所有數據,並提供公司的指標。
i. 監督並解決所有客戶的發票數據問題,並和各供應商協調和管理所有以前的平衡合作關系。
j. 管理所有的數據消耗異常狀態,確定數據的漏洞後准備相應的決議。
k. 監督流程管理工具,並確保遵守所有周期的指導方針。
l. 維護和管理發票文檔庫,並解決所有問題。
m. 執行內部設計和准備所有的發票,並確定更進流程的質量。

大數據觀察員Big DataVisualizer
職責:
a. 通過可視化軟體給商務提供價值增值分析來指導分析和借鑒分析帶來的影響,綜合成清晰的溝通。
b. 理解數據如何在不同的系統中運作來提供有關要求來確定正確的數據輸入組織報告/分析。
c. 與數據質量團隊之間緊密合作,以確保數據的完整性。
d. 發展業務需求為報告流程去推動功能規范化。
e. 在業務和跨職能團隊的合作下,完整地記錄報告流程和系統。
f. 收購,管理和文檔的數據(包括地理空間數據)。
g. 與客戶/客戶服務團一起進行工作計劃,並進行數據分析。
h. 參與提案撰寫,客戶交付成果和研究論文。
i. 對數據、GIS數據分析創建可視化從而列入建議書,報告,論文和多媒體項目數據。

大數據解決方案架構師Big DataSolutions Architect
職責:
a. 對Hadoop解決方案的整個生命周期進行引導,包括需求分析,平台選擇,技術架構設計,應用設計和開發,測試和部署。
b. 在一個團隊中,設計並卡發開創性大規模集群的數據處理系統提供了技術和管理的領導。
c. 幫助Xtremeinsights客戶指定戰略,最大限度地發揮數據的價值。
d. 幫助Xtremeinsights在大數據空間通過促進白皮書,技術評論對社區建立思想領導。

大數據工程師Big DataEngineer
職責:
a. 收集和處理大規模的原始數據(包括腳本編寫,網頁獲取,調用APIs,編寫SQL查詢等)。
b. 和我們的工程團隊密切合作,並以驚人的創新和演算法與我們的生產系統相結合。
c. 將非結構化數據處理成適合分析的一種形式,然後進行分析。
d. 根據所需要的和專案分析商業決策。

大數據研究員Big DataResearcher
職責:
a. 從多種關系資料庫中提取數據,操作,使用定量,統計和可視化工具研究數據。
b. 告知適當的建模技術的選擇,以確保使用嚴格的統計過程的測試模型進行開發。
c. 建立和維持有效的流程來驗證並更新預測模型。
d. 分析,建模,預測衛生服務的利用模式/趨勢和創造能力來為醫療保健服務模式模擬假設的情景。
e. 與內部業務,分析和數據戰略合作夥伴共同合作,從而提高效率,為核心的軟體產品增加預測模型的適用性
f. 幫助管理分析的創新性,形成的見解,主張整合新概念到現有的客戶端工具中,幫助翻譯即席分析到可擴展的軟體解決方案。

數據倉庫管理員Data warehousemanager
職責:
a. 指定並實施信息管理策略。
b. 協調和管理的信息管理解決方案
c. 多個項目的范圍,計劃和優先順序安排
d. 管理倉庫的各個方面,比如數據外包,移動,質量,設計和實施。

數據架構師Data architect
職責:
a. 通過採用最佳實踐和工具,包括SOL,SSIS,SSRS和OLAP來設計資料庫,數據模型,ETL過程,數據倉庫應用和商業智能(BI)報告。
b. 根據現有的標准和准則來提供高品質(DA)的相關結果,包括ETL過程,數據倉庫設計和數據系統的改進。
c. 通過提供對數據倉庫的方法和途徑的建議解決程序(DA)的相關問題與業務分析師和技術團隊。
d. 分析(DA),相關業務需要,可與項目工作人員對(DA)的發展未來做出決定和建議。

資料庫管理員Database manager
職責:
a. 提高資料庫工具和服務的有效性。
b. 確保所有的數據符合法律規定。
c. 確保信息得到保護和備份。
d. 與工作團隊做定期報告。
e. 監控資料庫性能。
f. 改善使用的技術。
g. 建立新的資料庫。
h. 檢測數據錄入程序。
i. 故障排除。

商業智能分析員Businessintelligence analyst
職責:
a. 就工具,報告或者元數據增強來進行傳播信息。
b. 進行或協調測試,以確保情報的定義與需求相一致。
c. 使用商業智能工具來識別或監測現有和潛在的客戶。
d. 綜合目前的商業只能和趨勢數據,來支持採取行動的建議。
e. 維護或更新的商業智能工具,資料庫,儀錶板,系統或方法。
f. 及時的管理用戶流量的商業情報。

數據倉庫分析員Data warehouseanalyst
職責:
a. 了解企業用戶的需求信息,並將其傳送到數據倉庫團隊的其他成員。
b. 指導並實施面試任務。
c. 指導並收集采訪資料。
d. 協助DW數據分析師分析現有的報告並確定整合指標。
e. 指導資料庫需求文件的准備。
f. 協助數據分析師測繪任務。
g. 分析現有的報告。
h. 引導業務指標的鑒定和文獻。
i. 在合適的資源系統專家的指導下確定系統的記錄。
j. 幫助識別潛在的數據來源,資料庫。
k. 負責數據採集過程的試驗和實施。
l. 擔任ETL和前端程序員的顧問。

數據建模師Data modeler
職責:
a. 為標准命名約定和編碼實踐指定最佳的訓練方案,以確保數據模型的一致性。
b. 推薦在新環境中的數據模型的重復使用機會。
c. 對資料庫和SQL腳本執行的物理數據模型進行逆向工程。
d. 評估數據模型和物理資料庫的差異和矛盾。
e. 驗證業務數據對象的准確性和完整性。
f. 分析數據相關的系統的挑戰,並提出相應的解決方案。
g. 根據公司標准制定標準的數據模型。
h. 對系統分析員,工程師,程序員和其他人在項目的限制和能力,性能要求和介面進行指導。
i. 審查修改現有軟體,以提高效率和性能。

資料庫開發員Databasedeveloper
職責:
a. 設計,開發和實施基於客戶需求的資料庫系統。
b. 優化資料庫系統的性能效率。
c. 准備設計規范和功能單證的分配資料庫的項目。
d. 對資料庫系統進行空間管理和容量規劃。
e. 建立資料庫表和字典。
f. 參與資料庫設計和架構,以支持應用程序開發項目。
g. 執行數據備份和檔案上定期。
h. 測試資料庫,並進行錯誤修正。
i. 及時解決資料庫相關的問題。
j. 制定安全程序,以保護資料庫免受未經授權的使用。
k. 評估現有的資料庫,並提出改進建議的執行效率。
l. 開發用於資料庫設計和開發活動的最佳實踐。

門戶網站管理員Portaladministrator
職責:
a. 制定所有門戶網站的布局和維護網站的所有功能。
b. 監督所有頁面內容,並提供給所有工作人員和外部組織的幫助。
c. 整合新的技術體系為門戶和網路管理員的協調工作。
d. 維持對所有門戶項目的現狀,並協助解決新的和現有渠道的所有問題和自動化的所有進程。
e. 在所有配置進行測試和升級過程中,實現所有的目標,並保持對所有門戶環境的新技術維護。
f. 確定網站的所有長期目標,並根據指引,建議改進所有內容。
g. 保持高效的門戶網站的文檔系統,並協助安裝所有Web中心互動系統。
h. 分析所有系統的升級和應用程序,並確保遵守所有計劃要求,設計了新的門戶網站所有的解決方案,並協助解決所有的生產問題。
i. 監測和分析所有門戶網站的系統指標,並保持最佳性能。
j. 與管理人員和社區成員協調落實各項業務活動,並確定所有的web伺服器配置。
k. 管理和配置所有的門戶應用程序。
l. 保留所有門戶網站的市場和不斷變化的行業知識。
m. 對全業務運營提供支持,並確保所有的利潤優化。

資料庫管理員Databaseadministrator
職責:
a. 選擇合適的軟體和硬體
b. 管理數據安全和隱私
c. 管理數據完整性
d. 數據備份
e. 資料庫恢復
f. 優化資料庫性能
g. 提高查詢處理性能

首席數據分析師Chief DataAnalyst
職責:
a. 為一部分的基礎整體研究程序員開發新的分析項目
b. 團隊的其他成員來提供技術投入研究項目的發展。
c. 為分析員提供大型調查的收集,編制和分析。
d. 在適當的時候使用Excel,SPSS或者STATA和先進的技術進行統計分析。
e. 對政策專家,相關的投資方和學者進行基礎的增長。

業務系統分析員Business SystemAnalyst
職責:
a. 確定通過研究業務職能業務目;收集信息;評估輸出要求和格式。
b. 設計通過分析要求的新的計算機程序;構建工作流程圖和示意圖;研究系統的能力;書寫規范。
c. 提高通過研究當下實踐系統進行設計修改。
d. 通過識別問題來對控制提出建議,提高寫作流程。
e. 通過定義項目里程碑,階段和要素來形成項目團隊,建立項目預算。

數據挖掘分析師Data mininganalyst
職責:
a. 對優先考慮的賬戶進行統計分析,從而最大限度的成功化。
b. 與主管或客戶端溝通行動計劃,並找出需要改進的地方。
c. 執行戰略數據分析和研究,以支持業務需求。
d. 找准機會從而通過復雜的統計建模提高生產率。
e. 瀏覽數據來認准機會並提高業務成效。
f. 指定業務流程,目標和戰略的理解,以提供分析和解釋。
g. 通過內部討論的理解,在適當情況下獲得業務需求和必要的分析。

數據策略師Data strategist
職責:
a. 定義大數據戰略,包括設計多階段實施路線圖。
b. 獨立工作,或作為一個團隊的一部分,設計和開發的大數據解決方案。
c. 異構數據的數據錯誤,探索和發現新的見解。
d. 知道分析,架構,設計以及數據倉庫和商業只能解決方案的發展。
c. 指導年輕的團隊成員。
f. 協助業務開發團隊提供售前活動和招標書。
g. 幫助評估和計劃項目。

業務數據分析師Business DataAnalyst
職責:
a. 與關鍵投資者的業務分析師和高級管理人員緊密合作,了解他們的經營策略和問題,確定研究需求,幫助設計實驗,並根據結果提出建議。
b. 通過客戶細分,從多個來源的定量和定性派生的發展和應用進行影響的決定。
c. 調整利益相關者和分析師對如何使用研究和分析的想法,以支持業務計劃和戰略的優先試圖(分析路線圖)。
d. 傳動復雜的分析項目,需要分析或利益相關者從開始到結束之間的多團隊協作。
e. 有效地管理多個在建設的項目,確保目標和時間獲得滿足。確定在短期和長期間的權衡和平衡所有投資者的需求。
f. 領導和參與業務討論,提供意見,需要的時候進行一些變革。
g. 關鍵指標與解釋器的討論,推測並提出行動。
h. 與業務夥伴的投資者在制定和優先的業務問題上考慮短期和長期的潛在影響,解釋結果,量化的機遇,並提出了一個觀點合作數據的專家來執行分析操作。
i. 在企業領導的重視下積極主動地帶來新的商機。
j. 知道分析師和股東對事物的知識和流程上,確保它們是可重復的,可持續的和可擴展的。
k. 在所有階段上與多個項目組合作。

『陸』 大數據專業畢業生就業崗位有哪些

大數據的擇業方向有大數據開發方向、數據挖掘數據分析和機器學習方向、大數據運維和雲計算方向,主要從事互聯網行業相關工作。

大數據課程難度大,同時有大專本科學歷要求!但工作需求大,畢業以後可以從事的崗位還是比較多的,回報高,待遇在年薪30~50萬之間,如果是互聯網大廠更高。

大數據學習內容主要有:

①JavaSE核心技術;

②Hadoop平台核心技術、Hive開發、HBase開發;

③Spark相關技術、Scala基本編程;

④掌握Python基本使用、核心庫的使用、Python爬蟲、簡單數據分析;理解Python機器學習;

⑤大數據項目開發實戰,大數據系統管理優化等。

工作崗位列舉幾個熱門:

初級大數據離線處理,薪資10000-13000;

Spark開發工程師,薪資14000-16000;

Python爬蟲工程師,薪資16000-20000;

大數據開發工程師,薪資20000+。

想要系統學習,你可以考察對比一下開設有IT專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能,建議實地考察對比一下。

祝你學有所成,望採納。

『柒』 大數據行業有哪些崗位

一、數據分析師/數據科學家


從本質來說數據分析師和數據科學家是相同的,因為他們做同樣的事情——從數據中獲取價值。價值可以有不同的形式:對於數據分析師來說,價值意味著洞察,而對於數據科學家來說,是在洞察之上的產品發展智能。


數據分析師分析數據以獲得洞察,並幫助形成業務決策。而數據科學家更關心的是使用機器學習和 A / B 測試來驅動和改進產品。


數據科學家專注於前瞻,即做出預測,而數據分析師則更多地聚焦在回顧,如分析歷史數據。


二、數據工程師


沒有數據工程師的幫助,數據科學家就無法做出貢獻。為什麼?由於數據工程師構建了引入數據的數據管道!如同煉油廠閑置,是由於沒有原油進入,最終原因是石油管道還沒有建成。


三、業務分析師(各種職能)


傳統的 BA 引導,記錄業務需求並充當業務和技術之間的聯絡人。相反,我們使用業務分析師的頭銜作為總括頭銜來涵蓋所有具有業務性質(非技術性)且需要重要數據技能的分析師角色。


四、BI分析師/工程師/開發人員


我們還擁有傳統的商業智能( BI )分析師和商業智能工程師角色。一般來說,當我們談論 BI 時,我們指的是使用“定義良好的BI基礎設施”在“大公司”環境中進行數據分析和報告,基礎設施指的是各種企業軟體系統( ERP,CRM 等)以及在他們之上進行連接和報告 BI 工具。


關於大數據行業有哪些崗位,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『捌』 大數據工程有哪些崗位領域

從崗位來看,由大數據開發、挖掘、演算法、分析、到架構。從級別來看,從工程師、高級工程師,再到架構師,甚至到科學家。而且,契合不同的行業領域,又有專屬於這些行業的崗位衍生,如涉及金融領域的數據分析師等。


大數據的相關工作崗位有很多,有數據分析師、數據挖掘工程師、大數據開發工程師、大數據產品經理、可視化工程師、爬蟲工程師、大數據運營經理、大數據架構師、數據科學家等等,下面就講講其中的幾個崗位。


數據分析師:日常工作內容有三個方面,第一是臨時取數,第二是報表的需求分析,第三是業務專題分析。


數據挖掘工程師:日常工作內容主要有五類。第一是用戶基礎研究,第二是個性化推薦演算法,第三是風控領域應用的模型,第四是產品的知識庫,第五是文本挖掘、文本分析、語義分析、圖像識別。


數據產品經理:日常工作內容:第一是大數據平台的建設,讓獲取數據、使用數據更加容易,構建完善的指標體系,實現對業務的全流程監控,提高決策效率,降低運營成本,提升應收水平;第二是數據需求分析,形成數據產品,對內可以提升效率,控製成本,對外增加創收,最終實現數據價值的變現。


大數據研發工程師:這個崗位是需求量最大的,日常工作內容有三個方面:第一是數據的採集,比如爬蟲、日誌採集等;第二是數據預處理、ETL工作,比如數據清洗、轉換、集成、規約等;第三是大數據應用和可視化的開發。


此外,現在越來越多的行業領域也涉獵大數據,通常來說它們可以被大致分為兩類:大數據工程與大數據分析。而這些領域互相獨立又互相關聯。


而隨著AI(人工智慧)的到來,未來大數據需要依賴於雲計算平台海量的計算能力,同時通過大數據給人工智慧提供內容。所以在未來十年,雲計算,大數據,人工智慧是這個時代對社會影響最深遠的技術,為此我們需要提前做好准備。


關於大數據工程有哪些崗位領域,該如何下手的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。


以上是小編為大家分享的關於大數據工程有哪些崗位領域?的相關內容,更多信息可以關注環球青藤分享更多干貨

『玖』 與大數據相關的工作職位有哪些

說個大概吧

大數據開發工程師:負責公司大數據平台的開發和維護,負責大數據平台持續集成相關工具平台的架構設計與產品開發等;

數據分析師:進行數據搜集、整理、分析,針對數據分析結論給管理銷售運營提供指導意義的分析意見;

數據挖掘工程師:商業智能,用戶體驗分析,預測流失用戶等;需要過硬的數學和統計學功底以外,對演算法的代碼實現也有很高的要求。

資料庫開發:設計,開發和實施基於客戶需求的資料庫系統,通過理想介面連接資料庫和資料庫工具,優化資料庫系統的性能效率等;

數據管理:資料庫設計、數據遷移、資料庫性能管理、數據安全管理,故障檢修問題、數據備份、數據恢復等;

數據科學家:清洗,管理和組織(大)數據,利用演算法和模型提高數據處理效率、挖掘數據價值、實現從數據到知識的轉換;

數據產品經理:把數據和業務結合起來做成數據產品。

『拾』 大數據哪些職位比較容易些

大數據的相關的崗位有哪些,今天加米穀大數據就來說個大概:

1、大數據開發工程師

開發,建設,測試和維護架構,負責公司大數據平台的開發和維護,負責大數據平台持續集成相關工具平台的架構設計與產品開發等

2、數據分析師

收集,處理和執行統計數據分析;運用工具,提取、分析、呈現數據,實現數據的商業意義,需要業務理解和工具應用能力

3、數據挖掘工程師

數據建模、機器學習和演算法實現;商業智能,用戶體驗分析,預測流失用戶等;需要過硬的數學和統計學功底以外,對演算法的代碼實現也有很高的要求

4、數據架構師

需求分析,平台選擇,技術架構設計,應用設計和開發,測試和部署;高級演算法設計與優化;數據相關系統設計與優化,需要平台級開發和架構設計能力

閱讀全文

與大數據有什麼崗位相關的資料

熱點內容
推薦理財產品客戶問為什麼相信你 瀏覽:470
貴陽葯膏批發市場在哪裡 瀏覽:384
醫療小程序做什麼 瀏覽:670
濰坊去哪裡考察市場 瀏覽:777
手機如何發信息開通粉鑽 瀏覽:29
如何研究交易技術 瀏覽:444
sql數據選項卡在哪裡 瀏覽:886
僱傭別人做微信小程序多少錢 瀏覽:200
恆泰證券怎麼開通轉債交易 瀏覽:539
縣城沒有順豐快遞代理怎麼樣 瀏覽:177
空分技術學院有什麼專業 瀏覽:981
北京旅遊機票代理怎麼聯系 瀏覽:409
舊貨市場上哪裡有舊空調賣 瀏覽:490
執行監理監督程序是什麼 瀏覽:227
天津銀行股票如何交易 瀏覽:467
模型怎麼招代理拿貨 瀏覽:334
雷賽伺服怎麼保存數據 瀏覽:902
草坪剪紙技術有哪些 瀏覽:474
創新城股票做事交易如何掛檔 瀏覽:764
qq怎麼屏蔽人發信息 瀏覽:333