⑴ 數據採集的方法有哪些 數據採集的基本方法
1、數據採集根據採集數據的類型可以分為不同的方式,主要方式有:感測器採集、爬蟲、錄入、導入、介面等。
2、數據採集的基本方法:
(1)感測器監測數據:通過感測器,即現在應用比較廣的一個詞:物聯網。通過溫濕度感測器、氣體感測器、視頻感測器等外部硬體設備與系統進行通信,將感測器監測到的數據傳至系統中進行採集使用。
(2)第二種是新聞資訊類互聯網數據,可以通過編寫網路爬蟲,設置好數據源後進行有目標性的爬取數據。
(3)第三種通過使用系統錄入頁面將已有的數據錄入至系統中。
(4)第四種方式是針對已有的批量的結構化數據可以開發導入工具將其導入系統中。
(5)第五種方式,可以通過API介面將其他系統中的數據採集到本系統中。
⑵ 採集數據 參數種類
採集數據參數種類是:Web數據(包括網頁、視頻、音頻、動畫、圖片等)、日誌數據、資料庫數據、其它數據。
1、web數據採集:網路數據採集是指通過網路爬蟲或網站公開 API 等方式從網站上獲取數據信息的過程。
網路會從一個或若干初始網頁的 URL 開始,獲得各個網頁上的內容,並且在抓取網頁的過程中,不斷從當前頁面上抽取新的 URL 放入隊列,直到滿足設置的停止條件為止。
2、系統日誌採集:系統日誌採集主要是收集公司業務平台日常產生的大量日誌數據,供離線和在線的大數據分析系統使用。
3、資料庫採集:傳統企業會使用傳統的關系型資料庫 MySQL 和 Oracle 等來存儲數據。
4、其他數據:感知設備數據採集是指通過感測器、攝像頭和其他智能終端自動採集信號、圖片或錄像來獲取數據。
數據源數據同步種類是:
1、直接數據源同步:是指直接的連接業務資料庫,通過規范的介面(如JDBC)去讀取目標資料庫的數據。這種方式比較容易實現,但是如果業務量比較大的數據源,可能會對性能有所影響。
2、生成數據文件同步:是指從數據源系統現生成數據文件,然後通過文件系統同步到目標資料庫里。
3、資料庫日誌同步:是指基於源資料庫的日誌文件進行同步。現在大多數資料庫都支持生成數據日誌文件,並且支持用數據日誌文件來恢復數據。因此可以使用這個數據日誌文件來進行增量同步。
⑶ 大數據採集有哪些方面
1. 數據質量把控
不論什麼時候應用各種各樣數據源,數據質量全是一項挑戰。這代表著企業必須做的工作中是保證數據格式准確配對,並且沒有重復數據或缺乏數據導致分析不靠譜。企業必須先分析和提前准備數據,隨後才可以將其與別的數據一起開展分析。
2.拓展
大數據的使用價值取決於其數量。可是,這也將會變成一個關鍵難題。假如企業並未設計構架方案開始進行拓展,則將會迅速面臨一系列問題。其一,假如企業不準備基礎設施建設,那麼基礎設施建設的成本費便會提升。這將會給企業的費用預算帶來壓力。其二,假如企業不準備拓展,那麼其特性將會明顯降低。這兩個難題都應當在搭建大數據構架的整體規劃環節獲得處理。
3、安全系數
盡管大數據能夠為企業加深對數據的深入了解,但保護這種數據依然具備挑戰性。欺詐者和網路黑客將會對企業的數據十分感興趣,他們將會試著加上自身的仿冒數據或訪問企業的數據以獲得敏感信息。
⑷ 數據採集的五種方法是什麼
一、 問卷調查
問卷的結構,指用於不同目的的訪題組之間以及用於同一項研究的不同問卷之間,題目的先後順序與分布情況。
設計問卷整體結構的步驟如下:首先,根據操作化的結果,將變數進行分類,明確自變數、因變數和控制變數,並列出清單;其次,針對每個變數,依據訪問形式設計訪題或訪題組;再次,整體謀劃訪題之間的關系和結構;最後,設計問卷的輔助內容。
二、訪談調查
訪談調查,是指通過訪員與受訪者之間的問答互動來搜集數據的調查方式,它被用於幾乎所有的調查活動中。訪談法具有一定的行為規范,從訪談的充分准備、順利進入、有效控制到訪談結束,每一環節都有一定的技巧。
三、觀察調查
觀察調查是另一種搜集數據的方法,它藉助觀察者的眼睛等感覺器官以及其他儀器設備來搜集研究數據。觀察前的准備、順利進入觀察場地、觀察的過程、觀察記錄、順利退出觀察等均是技巧性很強的環節。
四、文獻調查
第一,通過查找獲得文獻;第二,閱讀所獲得文獻;第三,按照研究問題的操作化指標對文獻進行標注、摘要、摘錄;最後,建立文獻調查的資料庫。
五、痕跡調查
大數據是指與社會行為相伴生、通過設備和網路匯集在一起,數據容量在PB級別且單個計算設備無法處理的數字化、非結構化的在線數據。它完整但並非系統地記錄了人類某些社會行為。
大數據研究同樣是為了把握事物之間的關系模式。社會調查與研究中,對大數據的調查更多的是從大數據中選擇數據,調查之前同樣需要將研究假設和變數操作化。
關於數據採集的五種方法是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑸ 數據採集技術的方法有哪些
大數據技術在數據採集方面採用了哪些方法:
1、離線採集:
工具:ETL;
在數據倉庫的語境下,ETL基本上就是數據採集的代表,包括數據的提取(Extract)、轉換(Transform)和載入(Load)。在轉換的過程中,需要針對具體的業務場景對數據進行治理,例如進行非法數據監測與過濾、格式轉換與數據規范化、數據替換、保證數據完整性等。
2、實時採集:
工具:Flume/Kafka;
實時採集主要用在考慮流處理的業務場景,比如,用於記錄數據源的執行的各種操作活動,比如網路監控的流量管理、金融應用的股票記賬和 web 伺服器記錄的用戶訪問行為。在流處理場景,數據採集會成為Kafka的消費者,就像一個水壩一般將上游源源不斷的數據攔截住,然後根據業務場景做對應的處理(例如去重、去噪、中間計算等),之後再寫入到對應的數據存儲中。這個過程類似傳統的ETL,但它是流式的處理方式,而非定時的批處理Job,些工具均採用分布式架構,能滿足每秒數百MB的日誌數據採集和傳輸需求
3、互聯網採集:
工具:Crawler, DPI等;
Scribe是Facebook開發的數據(日誌)收集系統。又被稱為網頁蜘蛛,網路機器人,是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本,它支持圖片、音頻、視頻等文件或附件的採集。
除了網路中包含的內容之外,對於網路流量的採集可以使用DPI或DFI等帶寬管理技術進行處理。
4、其他數據採集方法
對於企業生產經營數據上的客戶數據,財務數據等保密性要求較高的數據,可以通過與數據技術服務商合作,使用特定系統介面等相關方式採集數據。比如八度雲計算的數企BDSaaS,無論是數據採集技術、BI數據分析,還是數據的安全性和保密性,都做得很好。
數據的採集是挖掘數據價值的第一步,當數據量越來越大時,可提取出來的有用數據必然也就更多。只要善用數據化處理平台,便能夠保證數據分析結果的有效性,助力企業實現數據驅動~
⑹ 數據採集的方法有幾種
有以下三種:
1、調查法。
調查方法一般分為普查和抽樣調查兩大類。
2、觀察法。
觀察法是通過開會、深入現場、參加生產和經營、實地采樣、進行現場觀察並准確記錄(包括測繪、錄音、錄相、拍照、筆錄等)調研情況。主要包括兩個方面:一是對人的行為的觀察,二是對客觀事物的觀察。觀察法應用很廣泛,常和詢問法、搜集實物結合使用,以提高所收集信息的可靠性。
3、文獻檢索。
文獻檢索就是從浩繁的文獻中檢索出所需的信息的過程。文獻檢索分為手工檢索和計算機檢索。
按性質分為:
①定位的,如各種坐標數據。
②定性的,如表示事物屬性的數據(居民地、河流、道路等)。
③定量的,反映事物數量特徵的數據,如長度、面積、體積等幾何量或重量、速度等物理量。
④定時的,反映事物時間特性的數據,如年、月、日、時、分、秒等。
⑺ 什麼是數據採集
數據採集,又稱數據獲取,是利用一種裝置,從系統外部採集數據並輸入到系統內部的一個介面。數據採集技術廣泛應用在各個領域。比如攝像頭,麥克風,都是數據採集工具。
在互聯網行業快速發展的今天,數據採集已經被廣泛應用於互聯網及分布式領域,數據採集領域已經發生了重要的變化。首先,分布式控制應用場合中的智能數據採集系統在國內外已經取得了長足的發展。其次,匯流排兼容型數據採集插件的數量不斷增大,與個人計算機兼容的數據採集系統的數量也在增加。國內外各種數據採集機先後問世,將數據採集帶入了一個全新的時代。
採集的全面性:採集的數據量足夠大具有分析價值、數據面足夠支撐分析需求。比如查看app的使用情況這一行為,我們需要採集從用戶觸發時的環境信息、會話、以及背後的用戶id,最後需要統計這一行為在某一時段觸發的人數、次數、人均次數、活躍比等。
採集的多維性:數據更重要的是能滿足分析需求。靈活、快速自定義數據的多種屬性和不同類型,從而滿足不同的分析目標。比如「查看app的使用情況」這一行為,我們需要採集用戶使用的app的哪些功能、點擊頻率、使用時常、打的app的時間間隔等多個屬性。才能使採集的結果滿足我們的數據分析!
採集的高效性:高效性包含技術執行的高效性、團隊內部成員協同的高效性以及數據分析需求和目標實現的高效性。
明確數據需求:
由於客戶所處行業不同,訴求也就各不一樣。所以首先必須明確客對於數據的最終用途,確定客戶需求。根據客戶所需搜集的數據信息與客戶溝通之後,總結需要收集的欄位。
2.調研數據來源:
根據客戶需求確定數據採集范圍。然後鎖定採集范圍和對採集的數據量進行預估。細化客戶需求,研究採集方向。
3.確定用什麼採集工具、軟體、代碼
面對不同的網站我們只有選擇更加合適的組合才能使採集結果更加有效。
4.確定存儲的方式:
根據採集量的大小對數據儲存的方式進行劃分。比較小的數據,一般使用excel表格存儲;幾千萬的大型數據,選擇資料庫存儲;對於GB級別的數據,就得用Hadoop、Spark、Redis等分布式存儲和處理技術的方法才能做到較好的管理和計算。選擇正確數據存儲的方式使客戶對數據的使用與管理更加便捷。
⑻ 數據採集的基本方法
常見的數據採集方式有問卷調查、查閱資料、實地考查、試驗。
1、問卷調查:問卷調查是數據收集最常用的一種方式,因為它的成本比較低,而且得到的信息也會比較全面。
2、查閱資料:查閱資料是最古老的數據收集的方式,通過查閱書籍,記錄等資料來得到自己想要的數據。
3、實地考查:實地考察是到指定的地方去做研究,指為明白一個事物的真相,勢態發展流程,而去實地進行直觀的,局部進行詳細的調查。
4、實驗:實驗收集數據的優點是數據的准確性很高,而缺點是未知性很大,不管實驗的周期還是實驗的結果都是不確定性的。
⑼ 公安手機信息採集能採集哪些內容
【法律分析】:簡訊,通話記錄,電話本等。信息採集是屬於人員信息提取,用於充實人員信息資料庫,為破案找線索之用。五提取:人員身份確認(核實戶籍資料)。指紋提取。手機信息提取。DNA採集(有唾液提取、血液提取等)。有交通工具的排查是否屬嫌疑車輛。(有吸毒嫌疑的要進行尿液檢驗)。五提取主要針對在巡邏中發現的無法出示身份證或行跡可以人員,對破獲轄區內的案件提供有用的線索。
【法律依據】:《中華人民共和國刑事訴訟法》
第一百四十八條 公安機關在立案後,對於危害國家安全犯罪、恐怖活動犯罪、黑社會性質的組織犯罪、重大毒品犯罪或者其他嚴重危害社會的犯罪案件,根據偵查犯罪的需要,經過嚴格的批准手續,可以採取技術偵查措施。人民檢察院在立案後,對於重大的貪污、賄賂犯罪案件以及利用職權實施的嚴重侵犯公民人身權利的重大犯罪案件,根據偵查犯罪的需要,經過嚴格的批准手續,可以採取技術偵查措施,按照規定交有關機關執行。
追捕被通緝或者批准、決定逮捕的在逃的犯罪嫌疑人、被告人,經過批准,可以採取追捕所必需的技術偵查措施。
第一百四十九條 批准決定應當根據偵查犯罪的需要,確定採取技術偵查措施的種類和適用對象。批准決定自簽發之日起三個月以內有效。對於不需要繼續採取技術偵查措施的,應當及時解除;對於復雜、疑難案件,期限屆滿仍有必要繼續採取技術偵查措施的,經過批准,有效期可以延長,每次不得超過三個月。