① 我想問一下大數據的預處理的方法包括哪些
數據預處理(datapreprocessing)是指在碰棚主要的處理以前對數據進行的一些處理。如對大部分地球物理面積性觀測數據在進行轉換或增強處理之前,首先將不規則分布的測網經過插值轉換為規則網的處理,以利於計算機的笑手則運算。另外,對於一些剖面測量數據,如地震資料預處理有垂直疊加、重排、加道頭、編輯、重新取樣、多路編輯等。數據預處理的方法:1、數據清理、數據清理常式通過填寫缺失的值、光滑雜訊數據、識別或刪除離群點並解決不一致性來「清理」數據。主要是達到如下目標:格式標准化,異常數據清除,錯誤糾正,重復數據的清除。2、數據集成、數據集成常式將多個數據源中的數據結合起來並統一存儲,建立數據倉庫的過程實際上就是數據集成。3、數據變換、通過平滑聚集,數據概化,規范化等方式將數據轉換成適用於數據挖掘的形式。4、數據歸約、數據挖掘時往往數據量非常大,在少量數據上進行挖掘分析需要很長的時間,數據歸約技術可以用來得到數據集的歸約表示,它小得多,但仍然接近於保持原薯此數據的完整性,並結果與歸約前結果相同或幾乎相同。
更多關於大數據的預處理的方法包括哪些,進入:https://m.abcgonglue.com/ask/ba73661615828563.html?zd查看更多內容
② 數據預處理的方法有哪些
數據預處理的方法有:數據清理、數據集成、數據規約和數據變換。
1、數據清洗
數據清洗是通過填補缺失值,平滑或刪除離群點,糾正數據的不一致來達到清洗的目的。簡單來說,就是把數據裡面哪些缺胳膊腿的數據、有問題的數據給處理掉。總的來講,數據清洗是一項繁重的任務,需要根據數據的准確性、完整性、一致性、時效性、可信性和解釋性來考察數據,從而得到標準的、干凈的、連續的數據。
(1)缺失值處理
實際獲取信息和數據的過程中,會存在各類的原因導致數據丟失和空缺。針對這些缺失值,會基於變數的分布特性和變數的重要性採用不同的方法。若變數的缺失率較高(大於80%),覆蓋率較低,且重要性較低,可以直接將變數刪除,這種方法被稱為刪除變數。
若缺失率較低(小於95%)且重要性較低,則根據數據分布的情況用基本統計量填充(最大值、最小值、均值、中位數、眾數)進行填充,這種方法被稱為缺失值填充。對於缺失的數據,一般根據缺失率來決定「刪」還是「補」。
(2)離群點處理
離群點(異常值)是數據分布的常態,處於特定分布區域或范圍之外的數據通常被定義為異常或雜訊。我們常用的方法是刪除離群點。
(3)不一致數據處理
實際數據生產過程中,由於一些人為因素或者其他原因,記錄的數據可能存在不一致的情況,需要對這些不一致數據在分析前進行清理。例如,數據輸入時的錯誤可通過和原始記錄對比進行更正,知識工程工具也可以用來檢測違反規則的數據。
2、數據集成
隨著大數據的出現,我們的數據源越來越多,數據分析任務多半涉及將多個數據源數據進行合並。數據集成是指將多個數據源中的數據結合、進行一致存放的數據存儲,這些源可能包括多個資料庫或數據文件。在數據集鉛螞磨成的過程中,會遇到一些問題,比如表述不一致,數據冗餘等,針對不同的問題,下面簡單介紹一下該如何處理。
(1)實體識別問槐斗題
在匹配來自多個不同信息源的現實世界實體時,如果兩個不同資料庫中的不同欄位名指向同一實體,數據分析者或計算機需要把兩個欄位名改為一致,避免模式集成時產生的錯誤。
(2)冗餘問題
冗餘是在數據集成中常見的一個問題,如果一個屬性能由另一個或另一組屬性「導出」,則此屬性可能是冗餘的。
(3)數據值的沖突和處理物裂
不同數據源,在統一合並時,需要保持規范化,如果遇到有重復的,要去重。
③ 大數據預處理的方法有哪些
1、數據清理
數據清理常式就是通過填寫缺失值、光滑雜訊數據、識別或者刪除離群點,並且解決不一致性來進行“清理數據”。
2、數據集成
數據集成過程將來自多個數據源的數據集成到一起。
3、數據規約
數據規約是為了得到數據集的簡化表示。數據規約包括維規約和數值規約。
4、數據變換
通過變換使用規范化、數據離散化和概念分層等方法,使得數據的挖掘可以在多個抽象層面上進行。數據變換操作是提升數據挖掘效果的附加預處理過程。
④ 大數據預處理包含哪些
一、數據清理
並不一定的數據全是有使用價值的,一些數據並不是大家所關注的內容,一些乃至是徹底不正確的影響項。因而要對數據過濾、去噪,進而獲取出合理的數據。
數據清理關鍵包括忽略值解決(缺乏很感興趣的屬性)、雜訊數據解決(數據中存有著不正確、或偏移期待值的數據)、不一致數據解決。
忽略數據能用全局性變數定義、屬性平均值、將會值填充或是立即忽視該數據等方式;雜訊數據能用分箱 (對初始數據開展排序,隨後對每一組內的數據開展平滑處理)、聚類演算法、電子計算機人工服務定期檢查重歸等方式 除去雜訊。
二、數據集成與轉換
數據集成就是指把好幾個數據源中的數據融合並儲存到一個一致的資料庫文件。這一全過程中必須主要處理三個難題:模式匹配、數據冗餘、數據值沖突檢測與解決。
因為來源於好幾個數據結合的數據在取名上存有差別,因而等額的的實體線常具備不一樣的名字。數據集成中最後一個關鍵難題就是數據值矛盾難題,具體表現為來源於不一樣的統一實體線具備不一樣的數據值。
三、數據規約
數據規約關鍵包含:數據方集聚、維規約、數據縮小、標值規約和定義層次等。
倘若依據業務流程要求,從資料庫房中獲得了剖析所必須的數據,這一數據集將會十分巨大,而在大量數據上開展數據剖析和數據發掘的成本費又非常高。應用數據規約技術性則能夠 完成數據集的規約表明,促使數據集縮小的另外依然趨於維持原數據的一致性。在規約後的數據集在開展發掘,仍然可以獲得與應用原數據集幾近同樣的剖析結果。
關於大數據預處理包含哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑤ 數據預處理
在數據挖掘中,海量的原始數據中存在大量不完整(有缺失值)、不一致、有異常的數據,會嚴重影響到數據挖掘建模的執行效果,甚至會導致挖掘結果的偏差,進而數據清洗就變得尤為重要。在數據清洗完成後接著甚至同時進行數據集成、變換、規約等一系列的處理,而整個過程稱之為 數據預處理 。在整個數據挖掘過程中,數據預處理工作大致占據整個過程的 60% 。
一般來說,數據預處理的主要包括如下內容: 數據清洗、數據集成、數據變換、數據規約。
接下來的內容,我們也是從這幾方面闡述。
常見的缺失值處理方法: 刪除法、替換法、插補法等
(1)、刪除法: 最簡單的缺失值處理方法。從不同角度進行數據處理劃分:
<code>
缺失值的處理
inputfile$date=as.numeric(inputfile$date)#將日期轉換成數值型變數
sub=which(is.na(inputfile$sales))#識別缺失值所在行數
inputfile1=inputfile[-sub,]#將數據集分成完整數據和缺失數據兩部分
inputfile2=inputfile[sub,]
行刪除法處理缺失,結果轉存
result1=inputfile1
</code>
(2)、替換法
一般根據屬性將變數分:數值型和非數值型
在數據挖掘過程中,可能會存在數據分布在不同的數據源中,而這個時候需要將多個數據源合並存放在一個一致的數據存儲(如數據倉庫),整個過程稱之為 數據集成 。
【
數據倉庫:
關於數據倉庫構思
漫談數據倉庫之維度建模
漫談數據倉庫之拉鏈表(原理、設計以及在Hive中的實現)
】
在R中,通過將存儲在兩個數據框中的數據以關鍵字為依據,以行為單位做列向合並,直接通過merge()函數完成。
merge(數據框1,數據框2,by="關鍵字"),而合並後的新數據自動按照關鍵字取值大小升序排列。不過在數據集成過程中存在表達形式不一樣,導致不能直接完成匹配,就需要我們進行加以轉換、提煉、集成等操作。具體從如下幾方面:
(1)、實體識別
從不同數據源識別出現實世界的實體,來完成統一不同源的數據矛盾之處。
實體識別承擔著檢測和解決這些沖突的任務
(2)、冗餘屬性識別
數據變換主要對數據進行規范化處理、連續變數的離散化以及屬性屬性的構造,將數據轉換成「適當的」形式,來滿足挖掘任務及演算法的需要。
(1)、簡單函數變換
對原始數據進行某些數學函數變換,常見平方、開方、取對數、差分運算等等
主要來完成不具有正態分布變換服從正態分布;非平穩序列變為平穩序列等等
(2)、數據規范化
為了清除指標之間的量綱和取值范圍差異的影響,需要進行標准化處理,將數據按照比例進行縮放,使之落入一個特定區域,便於進行綜合分析。
常見方法如下:
<code>
讀取數據
data=read.csv('./data/normalization_data.csv',he=F)
最小-最大規范化
b1=(data[,1]-min(data[,1]))/(max(data[,1])-min(data[,1]))
b2=(data[,2]-min(data[,2]))/(max(data[,2])-min(data[,2]))
b3=(data[,3]-min(data[,3]))/(max(data[,3])-min(data[,3]))
b4=(data[,4]-min(data[,4]))/(max(data[,4])-min(data[,4]))
data_scatter=cbind(b1,b2,b3,b4)
零-均值規范化
data_zscore=scale(data)
小數定標規范化
i1=ceiling(log(max(abs(data[,1])),10))#小數定標的指數
c1=data[,1]/10^i1
i2=ceiling(log(max(abs(data[,2])),10))
c2=data[,2]/10^i2
i3=ceiling(log(max(abs(data[,3])),10))
c3=data[,3]/10^i3
i4=ceiling(log(max(abs(data[,4])),10))
c4=data[,4]/10^i4
data_dot=cbind(c1,c2,c3,c4)
</code>
(3)、連續屬性離散化
在數據的取值范圍內設定若干個離散的劃分點,將取值范圍劃分為不同的離散化的區間,最後使用不同的符號或數值代表落在不同區間的數據值。
常見離散方法:
(4)、屬性構造
利用已有的屬性構造出新的屬性
(5)、小波變換(本次不進行闡述)
數據規約在大數據集上產生更小的且保持原數據完整性的新數據集,提升在數據集合上進行分析和挖掘的效率。
意義如下:
⑥ 有哪些數據預處理的方法
1、數據清理數據清理(data cleaning) 的主要思想是通過填補缺失值、光滑雜訊數據,平滑或刪除離群點,並解決數據的不一致性來“清理“數據。如果用戶認為數據時臟亂的,他們不太會相信基於這些數據的挖掘結果,即輸出的結果是不可靠的。
2、數據集成
數據分析任務多半涉及數據集成。數據集成將多個數據源中的數據結合成、存放在一個一致的數據存儲,如數據倉庫中。這些源可能包括多個資料庫、數據方或一般文件。
3、數據規約
數據歸約技術可以用來得到數據集的歸約表示,它小得多,但仍接近地保持原數據的完整性。 這樣,在歸約後的數據集上挖掘將更有效,並產生相同(或幾乎相同)的分析結果。
4、數據變換
數據變換包括對數據進行規范化,離散化,稀疏化處理,達到適用於挖掘的目的。
⑦ 數據預處理的流程是什麼
數據預處理的常用流程為:去除唯一屬性、處理缺失值、屬性編碼、數據標准化正則化、特徵選擇、主成分分析。
去除唯一屬性
唯一屬性通常是一些id屬性,這些屬性並不能刻畫樣本自身的分布規律,所以簡單地刪除這些屬性即可。
處理缺失值
缺失值處理的三種方法:直接使用含有缺失值的特徵;刪除含有缺失值的特徵(該方法在包含缺失值的屬性含有大量缺失值而僅僅包含極少量有效值時是有效的);缺失值補全。
常見的缺失值補全方法:均值插補、同類均值插補、建模預測、高維映射、多重插補、極大似然估計、壓縮感知和矩陣補全。
(1)均值插補
如果樣本屬性的距離是可度量的,則使用該屬性有效值的平均值來插補缺失的值;
如果的距離是不可度量的,則使用該屬性有效值的眾數來插補缺失的值。如果使用眾數插補,出現數據傾斜會造成什麼影響?
(2)同類均值插補
首先將樣本進行分類,然後以該類中樣本的均值來插補缺失值。
(3)建模預測
將缺失的屬性作為預測目標來預測,將數據集按照是否含有特定屬性的缺失值分為兩類,利用現有的機器學習演算法對待預測數據集的缺失值進行預測。
該方法的根本的缺陷是如果其他屬性和缺失屬性無關,則預測的結果毫無意義;但是若預測結果相當准確,則說明這個缺失屬性是沒必要納入數據集中的;一般的情況是介於兩者之間。
(4)高維映射
將屬性映射到高維空間,採用獨熱碼編碼(one-hot)技術。將包含K個離散取值范圍的屬性值擴展為K+1個屬性值,若該屬性值缺失,則擴展後的第K+1個屬性值置為1。
這種做法是最精確的做法,保留了所有的信息,也未添加任何額外信息,若預處理時把所有的變數都這樣處理,會大大增加數據的維度。這樣做的好處是完整保留了原始數據的全部信息、不用考慮缺失值;缺點是計算量大大提升,且只有在樣本量非常大的時候效果才好。
(5)多重插補(MultipleImputation,MI)
多重插補認為待插補的值是隨機的,實踐上通常是估計出待插補的值,再加上不同的雜訊,形成多組可選插補值,根據某種選擇依據,選取最合適的插補值。
(6)壓縮感知和矩陣補全
(7)手動插補
插補處理只是將未知值補以我們的主觀估計值,不一定完全符合客觀事實。在許多情況下,根據對所在領域的理解,手動對缺失值進行插補的效果會更好。
⑧ 數據預處理包括哪些內容
數據預處理沒有統一的標准,只能說是根據不同類型的分析數據和業務需求,在對數據特性做了充分的理解之後,再選擇相關的數據預處理技術。
通常來說,數據預處理涉及到——
1)數據清理
填寫空缺的值,平滑雜訊數據,識別、刪除孤立點,解決不一致性
2)數據集成
集成多個資料庫、數據立方體或文件
3)數據變換
規范化和聚集
4)數據歸約
得到數據集的壓縮表示,它小得多,但可以得到相同或相近的結果
5)數據離散化
數據歸約的一部分,通過概念分層和數據的離散化來規約數據,對數字型數據特別重要。
⑨ 大數據的預處理過程包括
大數據採集過程中通常有一個或多個數據源,這些數據源包括同構或異構的資料庫、文件系統、服務介面等,易受到雜訊數據、數據值缺失、數據沖突等影響,因此需首先對收集到的大數據集合進行預處理,以保證大數據分析與預測結果的准確性與價值性。
大數據的預處理環節主要包括數據清理、數據集成、數據歸約與數據轉換等內容,可以大大提高大數據的總體質量,是大數據過程質量的體現。 數據清理技術包括對數據的不一致檢測、雜訊數據的識別、數據過濾與修正等方面,有利於提高大數據的一致性、准確性、真實性和可用性等方面的質量;
數據集成則是將多個數據源的數據進行集成,從而形成集中、統一的資料庫、數據立方體等,這一過程有利於提高大數據的完整性、一致性、安全性和可用性等方面質量;
數據歸約是在不損害分析結果准確性的前提下降低數據集規模,使之簡化,包括維歸約、數據歸約、數據抽樣等技術,這一過程有利於提高大數據的價值密度,即提高大數據存儲的價值性。
數據轉換處理包括基於規則或元數據的轉換、基於模型與學習的轉換等技術,可通過轉換實現數據統一,這一過程有利於提高大數據的一致性和可用性。
總之,數據預處理環節有利於提高大數據的一致性、准確性、真實性、可用性、完整性、安全性和價值性等方面質量,而大數據預處理中的相關技術是影響大數據過程質量的關鍵因素